{"title":"可调谐声学衬垫及自适应控制系统的设计","authors":"Jiquan Liu, Tiexiong Su, Zhiwei Yan, Sigong Duan, Fuxiang Zhang, Haifeng Lv","doi":"10.1007/s40857-020-00210-5","DOIUrl":null,"url":null,"abstract":"<div><p>Traditional acoustic liners used in nacelles and fan ducts include a perforated face sheet bonded to a honeycomb core. A tunable acoustic liner with a piezoelectric substrate is developed to overcome the shortages of current liner such as unchangeable structure and uncontrollable bandwidth. After the piezoelectric panel deformed under the driving voltage, the resonant chamber changed, and the resonant frequency shifts. The finite element method is used to calculate the acoustic system’s resonant frequency and sound pressure distribution. The transmission loss measurement was carried out in an impedance tube to demonstrate the broadband noise control effect of the liner. The experiment result indicates that the TL peak frequency keeps linear with the driving voltage, and the sensitivity is measured to be 0.1 Hz/V. A DC amplified circuit using photo resistor is designed based on constructing the function of driving voltage and noise frequency. Benefit from the adaptive algorithm, when the noise frequency offsets from 756 to 788 Hz, the driving voltage can be automatically regulated from 110 to 420 V, and the liner always keeps resonating. Meanwhile, the sound level was reduced. The adaptive noise control is realized for broadband noise reduction.</p></div>","PeriodicalId":54355,"journal":{"name":"Acoustics Australia","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2021-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40857-020-00210-5","citationCount":"0","resultStr":"{\"title\":\"Design of Tunable Acoustic Liner and Adaptive Control System\",\"authors\":\"Jiquan Liu, Tiexiong Su, Zhiwei Yan, Sigong Duan, Fuxiang Zhang, Haifeng Lv\",\"doi\":\"10.1007/s40857-020-00210-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Traditional acoustic liners used in nacelles and fan ducts include a perforated face sheet bonded to a honeycomb core. A tunable acoustic liner with a piezoelectric substrate is developed to overcome the shortages of current liner such as unchangeable structure and uncontrollable bandwidth. After the piezoelectric panel deformed under the driving voltage, the resonant chamber changed, and the resonant frequency shifts. The finite element method is used to calculate the acoustic system’s resonant frequency and sound pressure distribution. The transmission loss measurement was carried out in an impedance tube to demonstrate the broadband noise control effect of the liner. The experiment result indicates that the TL peak frequency keeps linear with the driving voltage, and the sensitivity is measured to be 0.1 Hz/V. A DC amplified circuit using photo resistor is designed based on constructing the function of driving voltage and noise frequency. Benefit from the adaptive algorithm, when the noise frequency offsets from 756 to 788 Hz, the driving voltage can be automatically regulated from 110 to 420 V, and the liner always keeps resonating. Meanwhile, the sound level was reduced. The adaptive noise control is realized for broadband noise reduction.</p></div>\",\"PeriodicalId\":54355,\"journal\":{\"name\":\"Acoustics Australia\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2021-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s40857-020-00210-5\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acoustics Australia\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40857-020-00210-5\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acoustics Australia","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s40857-020-00210-5","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design of Tunable Acoustic Liner and Adaptive Control System
Traditional acoustic liners used in nacelles and fan ducts include a perforated face sheet bonded to a honeycomb core. A tunable acoustic liner with a piezoelectric substrate is developed to overcome the shortages of current liner such as unchangeable structure and uncontrollable bandwidth. After the piezoelectric panel deformed under the driving voltage, the resonant chamber changed, and the resonant frequency shifts. The finite element method is used to calculate the acoustic system’s resonant frequency and sound pressure distribution. The transmission loss measurement was carried out in an impedance tube to demonstrate the broadband noise control effect of the liner. The experiment result indicates that the TL peak frequency keeps linear with the driving voltage, and the sensitivity is measured to be 0.1 Hz/V. A DC amplified circuit using photo resistor is designed based on constructing the function of driving voltage and noise frequency. Benefit from the adaptive algorithm, when the noise frequency offsets from 756 to 788 Hz, the driving voltage can be automatically regulated from 110 to 420 V, and the liner always keeps resonating. Meanwhile, the sound level was reduced. The adaptive noise control is realized for broadband noise reduction.
期刊介绍:
Acoustics Australia, the journal of the Australian Acoustical Society, has been publishing high quality research and technical papers in all areas of acoustics since commencement in 1972. The target audience for the journal includes both researchers and practitioners. It aims to publish papers and technical notes that are relevant to current acoustics and of interest to members of the Society. These include but are not limited to: Architectural and Building Acoustics, Environmental Noise, Underwater Acoustics, Engineering Noise and Vibration Control, Occupational Noise Management, Hearing, Musical Acoustics.