格罗滕迪克富集分类

IF 0.6 4区 数学 Q3 MATHEMATICS
Yuki Imamura
{"title":"格罗滕迪克富集分类","authors":"Yuki Imamura","doi":"10.1007/s10485-022-09681-1","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we introduce the notion of Grothendieck enriched categories for categories enriched over a sufficiently nice Grothendieck monoidal category <span>\\(\\mathcal {V}\\)</span>, generalizing the classical notion of Grothendieck categories. Then we establish the Gabriel-Popescu type theorem for Grothendieck enriched categories. We also prove that the property of being Grothendieck enriched categories is preserved under the change of the base monoidal categories by a monoidal right adjoint functor. In particular, if we take as <span>\\(\\mathcal {V}\\)</span> the monoidal category of complexes of abelian groups, we obtain the notion of Grothendieck dg categories. As an application of the main results, we see that the dg category of complexes of quasi-coherent sheaves on a quasi-compact and quasi-separated scheme is an example of Grothendieck dg categories.</p></div>","PeriodicalId":7952,"journal":{"name":"Applied Categorical Structures","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2022-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Grothendieck Enriched Categories\",\"authors\":\"Yuki Imamura\",\"doi\":\"10.1007/s10485-022-09681-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we introduce the notion of Grothendieck enriched categories for categories enriched over a sufficiently nice Grothendieck monoidal category <span>\\\\(\\\\mathcal {V}\\\\)</span>, generalizing the classical notion of Grothendieck categories. Then we establish the Gabriel-Popescu type theorem for Grothendieck enriched categories. We also prove that the property of being Grothendieck enriched categories is preserved under the change of the base monoidal categories by a monoidal right adjoint functor. In particular, if we take as <span>\\\\(\\\\mathcal {V}\\\\)</span> the monoidal category of complexes of abelian groups, we obtain the notion of Grothendieck dg categories. As an application of the main results, we see that the dg category of complexes of quasi-coherent sheaves on a quasi-compact and quasi-separated scheme is an example of Grothendieck dg categories.</p></div>\",\"PeriodicalId\":7952,\"journal\":{\"name\":\"Applied Categorical Structures\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Categorical Structures\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10485-022-09681-1\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Categorical Structures","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10485-022-09681-1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文推广了经典的Grothendieck范畴的概念,对于在一个足够好的Grothendieck一元范畴\(\mathcal {V}\)上丰富的范畴,引入了Grothendieck富范畴的概念。然后建立了Grothendieck富范畴的Gabriel-Popescu型定理。我们还证明了在单系右伴随函子改变基单系范畴的情况下,保持了格罗滕迪克富范畴的性质。特别地,如果我们把阿贝尔群的复合体的一元范畴看成\(\mathcal {V}\),我们得到了Grothendieck dg范畴的概念。作为主要结果的一个应用,我们看到拟紧拟分离格式上拟相干轴的复合体的dg范畴是Grothendieck dg范畴的一个例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Grothendieck Enriched Categories

In this paper, we introduce the notion of Grothendieck enriched categories for categories enriched over a sufficiently nice Grothendieck monoidal category \(\mathcal {V}\), generalizing the classical notion of Grothendieck categories. Then we establish the Gabriel-Popescu type theorem for Grothendieck enriched categories. We also prove that the property of being Grothendieck enriched categories is preserved under the change of the base monoidal categories by a monoidal right adjoint functor. In particular, if we take as \(\mathcal {V}\) the monoidal category of complexes of abelian groups, we obtain the notion of Grothendieck dg categories. As an application of the main results, we see that the dg category of complexes of quasi-coherent sheaves on a quasi-compact and quasi-separated scheme is an example of Grothendieck dg categories.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
16.70%
发文量
29
审稿时长
>12 weeks
期刊介绍: Applied Categorical Structures focuses on applications of results, techniques and ideas from category theory to mathematics, physics and computer science. These include the study of topological and algebraic categories, representation theory, algebraic geometry, homological and homotopical algebra, derived and triangulated categories, categorification of (geometric) invariants, categorical investigations in mathematical physics, higher category theory and applications, categorical investigations in functional analysis, in continuous order theory and in theoretical computer science. In addition, the journal also follows the development of emerging fields in which the application of categorical methods proves to be relevant. Applied Categorical Structures publishes both carefully refereed research papers and survey papers. It promotes communication and increases the dissemination of new results and ideas among mathematicians and computer scientists who use categorical methods in their research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信