热环境下基于一般非局部弹性的旋转粘弹性纳米梁的波频散

IF 4.5 2区 工程技术 Q1 MATHEMATICS, APPLIED
A. Rahmani, S. Faroughi, M. Sari
{"title":"热环境下基于一般非局部弹性的旋转粘弹性纳米梁的波频散","authors":"A. Rahmani,&nbsp;S. Faroughi,&nbsp;M. Sari","doi":"10.1007/s10483-023-3031-8","DOIUrl":null,"url":null,"abstract":"<div><p>The present research focuses on the analysis of wave propagation on a rotating viscoelastic nanobeam supported on the viscoelastic foundation which is subject to thermal gradient effects. A comprehensive and accurate model of a viscoelastic nanobeam is constructed by using a novel nonclassical mechanical model. Based on the general nonlocal theory (GNT), Kelvin-Voigt model, and Timoshenko beam theory, the motion equations for the nanobeam are obtained. Through the GNT, material hardening and softening behaviors are simultaneously taken into account during wave propagation. An analytical solution is utilized to generate the results for torsional (TO), longitudinal (LA), and transverse (TA) types of wave dispersion. Moreover, the effects of nonlocal parameters, Kelvin-Voigt damping, foundation damping, Winkler-Pasternak coefficients, rotating speed, and thermal gradient are illustrated and discussed in detail.</p></div>","PeriodicalId":55498,"journal":{"name":"Applied Mathematics and Mechanics-English Edition","volume":"44 9","pages":"1577 - 1596"},"PeriodicalIF":4.5000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On wave dispersion of rotating viscoelastic nanobeam based on general nonlocal elasticity in thermal environment\",\"authors\":\"A. Rahmani,&nbsp;S. Faroughi,&nbsp;M. Sari\",\"doi\":\"10.1007/s10483-023-3031-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The present research focuses on the analysis of wave propagation on a rotating viscoelastic nanobeam supported on the viscoelastic foundation which is subject to thermal gradient effects. A comprehensive and accurate model of a viscoelastic nanobeam is constructed by using a novel nonclassical mechanical model. Based on the general nonlocal theory (GNT), Kelvin-Voigt model, and Timoshenko beam theory, the motion equations for the nanobeam are obtained. Through the GNT, material hardening and softening behaviors are simultaneously taken into account during wave propagation. An analytical solution is utilized to generate the results for torsional (TO), longitudinal (LA), and transverse (TA) types of wave dispersion. Moreover, the effects of nonlocal parameters, Kelvin-Voigt damping, foundation damping, Winkler-Pasternak coefficients, rotating speed, and thermal gradient are illustrated and discussed in detail.</p></div>\",\"PeriodicalId\":55498,\"journal\":{\"name\":\"Applied Mathematics and Mechanics-English Edition\",\"volume\":\"44 9\",\"pages\":\"1577 - 1596\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics and Mechanics-English Edition\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10483-023-3031-8\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Mechanics-English Edition","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10483-023-3031-8","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文主要研究受热梯度效应影响的粘弹性旋转纳米梁在粘弹性基础上的传播特性。采用一种新的非经典力学模型,建立了粘弹性纳米梁的全面、精确的力学模型。基于一般非局部理论(GNT)、Kelvin-Voigt模型和Timoshenko光束理论,得到了纳米光束的运动方程。通过GNT,在波传播过程中同时考虑了材料的硬化和软化行为。利用解析解生成了扭转(to)、纵向(LA)和横向(TA)波色散类型的结果。此外,还详细讨论了非局部参数、Kelvin-Voigt阻尼、地基阻尼、Winkler-Pasternak系数、转速和热梯度等因素的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On wave dispersion of rotating viscoelastic nanobeam based on general nonlocal elasticity in thermal environment

The present research focuses on the analysis of wave propagation on a rotating viscoelastic nanobeam supported on the viscoelastic foundation which is subject to thermal gradient effects. A comprehensive and accurate model of a viscoelastic nanobeam is constructed by using a novel nonclassical mechanical model. Based on the general nonlocal theory (GNT), Kelvin-Voigt model, and Timoshenko beam theory, the motion equations for the nanobeam are obtained. Through the GNT, material hardening and softening behaviors are simultaneously taken into account during wave propagation. An analytical solution is utilized to generate the results for torsional (TO), longitudinal (LA), and transverse (TA) types of wave dispersion. Moreover, the effects of nonlocal parameters, Kelvin-Voigt damping, foundation damping, Winkler-Pasternak coefficients, rotating speed, and thermal gradient are illustrated and discussed in detail.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.70
自引率
9.10%
发文量
106
审稿时长
2.0 months
期刊介绍: Applied Mathematics and Mechanics is the English version of a journal on applied mathematics and mechanics published in the People''s Republic of China. Our Editorial Committee, headed by Professor Chien Weizang, Ph.D., President of Shanghai University, consists of scientists in the fields of applied mathematics and mechanics from all over China. Founded by Professor Chien Weizang in 1980, Applied Mathematics and Mechanics became a bimonthly in 1981 and then a monthly in 1985. It is a comprehensive journal presenting original research papers on mechanics, mathematical methods and modeling in mechanics as well as applied mathematics relevant to neoteric mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信