{"title":"广义燃烧曲面的动力学研究","authors":"Chris Peters","doi":"10.1007/s12188-018-0198-5","DOIUrl":null,"url":null,"abstract":"<div><p>Generalized Burniat surfaces are surfaces of general type with <span>\\(p_g=q\\)</span> and Euler number <span>\\(e=6\\)</span> obtained by a variant of Inoue’s construction method for the classical Burniat surfaces. I prove a variant of the Bloch conjecture for these surfaces. The method applies also to the so-called Sicilian surfaces introduced by Bauer et al. in (J Math Sci Univ Tokyo 22(2–15):55–111, 2015. arXiv:1409.1285v2). This implies that the Chow motives of all of these surfaces are finite-dimensional in the sense of Kimura.</p></div>","PeriodicalId":50932,"journal":{"name":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg","volume":"88 2","pages":"377 - 387"},"PeriodicalIF":0.4000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12188-018-0198-5","citationCount":"2","resultStr":"{\"title\":\"A motivic study of generalized Burniat surfaces\",\"authors\":\"Chris Peters\",\"doi\":\"10.1007/s12188-018-0198-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Generalized Burniat surfaces are surfaces of general type with <span>\\\\(p_g=q\\\\)</span> and Euler number <span>\\\\(e=6\\\\)</span> obtained by a variant of Inoue’s construction method for the classical Burniat surfaces. I prove a variant of the Bloch conjecture for these surfaces. The method applies also to the so-called Sicilian surfaces introduced by Bauer et al. in (J Math Sci Univ Tokyo 22(2–15):55–111, 2015. arXiv:1409.1285v2). This implies that the Chow motives of all of these surfaces are finite-dimensional in the sense of Kimura.</p></div>\",\"PeriodicalId\":50932,\"journal\":{\"name\":\"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg\",\"volume\":\"88 2\",\"pages\":\"377 - 387\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s12188-018-0198-5\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12188-018-0198-5\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s12188-018-0198-5","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
Generalized Burniat surfaces are surfaces of general type with \(p_g=q\) and Euler number \(e=6\) obtained by a variant of Inoue’s construction method for the classical Burniat surfaces. I prove a variant of the Bloch conjecture for these surfaces. The method applies also to the so-called Sicilian surfaces introduced by Bauer et al. in (J Math Sci Univ Tokyo 22(2–15):55–111, 2015. arXiv:1409.1285v2). This implies that the Chow motives of all of these surfaces are finite-dimensional in the sense of Kimura.
期刊介绍:
The first issue of the "Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg" was published in the year 1921. This international mathematical journal has since then provided a forum for significant research contributions. The journal covers all central areas of pure mathematics, such as algebra, complex analysis and geometry, differential geometry and global analysis, graph theory and discrete mathematics, Lie theory, number theory, and algebraic topology.