利用Fokker-Planck模型分析放射治疗中剂量沉积的敏感性

Richard C. Barnard;Martin Frank;Kai Krycki
{"title":"利用Fokker-Planck模型分析放射治疗中剂量沉积的敏感性","authors":"Richard C. Barnard;Martin Frank;Kai Krycki","doi":"10.1093/imammb/dqv039","DOIUrl":null,"url":null,"abstract":"In this paper, we study the sensitivities of electron dose calculations with respect to stopping power and transport coefficients. We focus on the application to radiotherapy simulations. We use a Fokker–Planck approximation to the Boltzmann transport equation. Equations for the sensitivities are derived by the adjoint method. The Fokker–Planck equation and its adjoint are solved numerically in slab geometry using the spherical harmonics expansion (\n<tex>$P_N$</tex>\n) and an Harten-Lax-van Leer finite volume method. Our method is verified by comparison to finite difference approximations of the sensitivities. Finally, we present numerical results of the sensitivities for the normalized average dose deposition depth with respect to the stopping power and the transport coefficients, demonstrating the increase in relative sensitivities as beam energy decreases. This in turn gives estimates on the uncertainty in the normalized average deposition depth, which we present.","PeriodicalId":94130,"journal":{"name":"Mathematical medicine and biology : a journal of the IMA","volume":"34 1","pages":"109-123"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/imammb/dqv039","citationCount":"2","resultStr":"{\"title\":\"Sensitivity analysis for dose deposition in radiotherapy via a Fokker–Planck model\",\"authors\":\"Richard C. Barnard;Martin Frank;Kai Krycki\",\"doi\":\"10.1093/imammb/dqv039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the sensitivities of electron dose calculations with respect to stopping power and transport coefficients. We focus on the application to radiotherapy simulations. We use a Fokker–Planck approximation to the Boltzmann transport equation. Equations for the sensitivities are derived by the adjoint method. The Fokker–Planck equation and its adjoint are solved numerically in slab geometry using the spherical harmonics expansion (\\n<tex>$P_N$</tex>\\n) and an Harten-Lax-van Leer finite volume method. Our method is verified by comparison to finite difference approximations of the sensitivities. Finally, we present numerical results of the sensitivities for the normalized average dose deposition depth with respect to the stopping power and the transport coefficients, demonstrating the increase in relative sensitivities as beam energy decreases. This in turn gives estimates on the uncertainty in the normalized average deposition depth, which we present.\",\"PeriodicalId\":94130,\"journal\":{\"name\":\"Mathematical medicine and biology : a journal of the IMA\",\"volume\":\"34 1\",\"pages\":\"109-123\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1093/imammb/dqv039\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical medicine and biology : a journal of the IMA\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/8222056/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical medicine and biology : a journal of the IMA","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/8222056/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在本文中,我们研究了电子剂量计算对停止功率和输运系数的敏感性。重点研究了该方法在放射模拟中的应用。我们使用了玻尔兹曼输运方程的福克-普朗克近似。利用伴随法推导了灵敏度方程。采用球面谐波展开(P_N)和Harten-Lax-van Leer有限体积法对平板几何中的Fokker-Planck方程及其伴随方程进行了数值求解。通过与灵敏度的有限差分近似的比较验证了我们的方法。最后,我们给出了归一化平均剂量沉积深度相对于停止功率和输运系数的灵敏度的数值结果,表明相对灵敏度随着束流能量的降低而增加。这反过来又给出了我们提出的标准化平均沉积深度的不确定性的估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sensitivity analysis for dose deposition in radiotherapy via a Fokker–Planck model
In this paper, we study the sensitivities of electron dose calculations with respect to stopping power and transport coefficients. We focus on the application to radiotherapy simulations. We use a Fokker–Planck approximation to the Boltzmann transport equation. Equations for the sensitivities are derived by the adjoint method. The Fokker–Planck equation and its adjoint are solved numerically in slab geometry using the spherical harmonics expansion ( $P_N$ ) and an Harten-Lax-van Leer finite volume method. Our method is verified by comparison to finite difference approximations of the sensitivities. Finally, we present numerical results of the sensitivities for the normalized average dose deposition depth with respect to the stopping power and the transport coefficients, demonstrating the increase in relative sensitivities as beam energy decreases. This in turn gives estimates on the uncertainty in the normalized average deposition depth, which we present.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信