全纯映射空间上的复合运算

IF 0.6 4区 数学 Q3 MATHEMATICS
María D Acosta;Pablo Galindo;Luiza A Moraes
{"title":"全纯映射空间上的复合运算","authors":"María D Acosta;Pablo Galindo;Luiza A Moraes","doi":"10.1093/qmathj/haz035","DOIUrl":null,"url":null,"abstract":"We discuss the continuity of the composition on several spaces of holomorphic mappings on open subsets of a complex Banach space. On the Fréchet space of entire mappings that are bounded on bounded sets, the composition turns out to be even holomorphic. In such a space, we consider linear subspaces closed under left and right composition. We discuss the relationship of such subspaces with ideals of operators and give several examples of them. We also provide natural examples of spaces of holomorphic mappings where the composition is not continuous.","PeriodicalId":54522,"journal":{"name":"Quarterly Journal of Mathematics","volume":"71 1","pages":"557-572"},"PeriodicalIF":0.6000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/qmathj/haz035","citationCount":"0","resultStr":"{\"title\":\"The Composition Operation on Spaces of Holomorphic Mappings\",\"authors\":\"María D Acosta;Pablo Galindo;Luiza A Moraes\",\"doi\":\"10.1093/qmathj/haz035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We discuss the continuity of the composition on several spaces of holomorphic mappings on open subsets of a complex Banach space. On the Fréchet space of entire mappings that are bounded on bounded sets, the composition turns out to be even holomorphic. In such a space, we consider linear subspaces closed under left and right composition. We discuss the relationship of such subspaces with ideals of operators and give several examples of them. We also provide natural examples of spaces of holomorphic mappings where the composition is not continuous.\",\"PeriodicalId\":54522,\"journal\":{\"name\":\"Quarterly Journal of Mathematics\",\"volume\":\"71 1\",\"pages\":\"557-572\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2020-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1093/qmathj/haz035\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quarterly Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9266833/\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://ieeexplore.ieee.org/document/9266833/","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

讨论复Banach空间开子集上全纯映射在若干空间上复合的连续性。在有界集合上有界的整个映射的正则空间上,复合是偶全纯的。在这样的空间中,我们考虑在左右复合下封闭的线性子空间。讨论了这些子空间与理想算子的关系,并给出了几个例子。我们还提供了组成不连续的全纯映射空间的自然例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Composition Operation on Spaces of Holomorphic Mappings
We discuss the continuity of the composition on several spaces of holomorphic mappings on open subsets of a complex Banach space. On the Fréchet space of entire mappings that are bounded on bounded sets, the composition turns out to be even holomorphic. In such a space, we consider linear subspaces closed under left and right composition. We discuss the relationship of such subspaces with ideals of operators and give several examples of them. We also provide natural examples of spaces of holomorphic mappings where the composition is not continuous.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
36
审稿时长
6-12 weeks
期刊介绍: The Quarterly Journal of Mathematics publishes original contributions to pure mathematics. All major areas of pure mathematics are represented on the editorial board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信