基于队列的不相似向量保护稀疏视网膜模板

Mahshid Sadeghpour;Arathi Arakala;Stephen A. Davis;Kathy J. Horadam
{"title":"基于队列的不相似向量保护稀疏视网膜模板","authors":"Mahshid Sadeghpour;Arathi Arakala;Stephen A. Davis;Kathy J. Horadam","doi":"10.1109/TBIOM.2023.3239866","DOIUrl":null,"url":null,"abstract":"Retinal vasculature is a biometric characteristic that is highly accurate for recognition but for which no template protection scheme exists. We propose the first retinal template protection scheme, adapting an existing paradigm of cohort-based modelling to templates containing the node and edge data of retinal graphs. The template protection scheme results in at most 2.3% reduction in accuracy compared to unprotected templates. A common concern with cohort based systems is that the availability of distance scores can be exploited to reconstruct the biometric image or biometric template using inversion attack. On the contrary, we show that using our sparse templates in a cohort-based system results in less than 0.3% success rate for an inverse biometric attack. In addition, rigorous unlinkability analysis shows that the template protection scheme has linkability scores at least as low as or lower than the state-of-the-art template protection schemes.","PeriodicalId":73307,"journal":{"name":"IEEE transactions on biometrics, behavior, and identity science","volume":"5 2","pages":"233-243"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Protection of Sparse Retinal Templates Using Cohort-Based Dissimilarity Vectors\",\"authors\":\"Mahshid Sadeghpour;Arathi Arakala;Stephen A. Davis;Kathy J. Horadam\",\"doi\":\"10.1109/TBIOM.2023.3239866\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Retinal vasculature is a biometric characteristic that is highly accurate for recognition but for which no template protection scheme exists. We propose the first retinal template protection scheme, adapting an existing paradigm of cohort-based modelling to templates containing the node and edge data of retinal graphs. The template protection scheme results in at most 2.3% reduction in accuracy compared to unprotected templates. A common concern with cohort based systems is that the availability of distance scores can be exploited to reconstruct the biometric image or biometric template using inversion attack. On the contrary, we show that using our sparse templates in a cohort-based system results in less than 0.3% success rate for an inverse biometric attack. In addition, rigorous unlinkability analysis shows that the template protection scheme has linkability scores at least as low as or lower than the state-of-the-art template protection schemes.\",\"PeriodicalId\":73307,\"journal\":{\"name\":\"IEEE transactions on biometrics, behavior, and identity science\",\"volume\":\"5 2\",\"pages\":\"233-243\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on biometrics, behavior, and identity science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10029925/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on biometrics, behavior, and identity science","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10029925/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

视网膜血管系统是一种高度精确的生物特征识别,但没有模板保护方案存在。我们提出了第一个视网膜模板保护方案,将现有的基于队列的建模范式适应于包含视网膜图节点和边缘数据的模板。与未受保护的模板相比,模板保护方案的精度最多降低2.3%。基于队列系统的一个常见问题是,距离分数的可用性可以利用反转攻击来重建生物特征图像或生物特征模板。相反,我们表明,在基于队列的系统中使用我们的稀疏模板导致反生物识别攻击的成功率低于0.3%。此外,严格的非链接性分析表明,该模板保护方案的链接性得分至少低于或低于最先进的模板保护方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Protection of Sparse Retinal Templates Using Cohort-Based Dissimilarity Vectors
Retinal vasculature is a biometric characteristic that is highly accurate for recognition but for which no template protection scheme exists. We propose the first retinal template protection scheme, adapting an existing paradigm of cohort-based modelling to templates containing the node and edge data of retinal graphs. The template protection scheme results in at most 2.3% reduction in accuracy compared to unprotected templates. A common concern with cohort based systems is that the availability of distance scores can be exploited to reconstruct the biometric image or biometric template using inversion attack. On the contrary, we show that using our sparse templates in a cohort-based system results in less than 0.3% success rate for an inverse biometric attack. In addition, rigorous unlinkability analysis shows that the template protection scheme has linkability scores at least as low as or lower than the state-of-the-art template protection schemes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信