{"title":"用于人体姿态估计的渐进式方向感知姿态语法","authors":"Lu Zhou;Yingying Chen;Jinqiao Wang","doi":"10.1109/TBIOM.2023.3315509","DOIUrl":null,"url":null,"abstract":"Human pose estimation is challenged by lots of factors such as complex articulation, occlusion and so on. Generally, message passing among human joints plays an important role in rectifying the wrong detection caused by referred challenges. In this paper, we propose a progressive direction-aware pose grammar model which performs message passing by building the pose grammar in a novel fashion. Firstly, a multi-scale Bi-C3D pose grammar module is proposed to promote message passing among human joints within a local range. We propose to conduct message passing by means of 3D convolution (C3D) which proves to be more effective compared with other sequential modeling techniques. To facilitate the message passing, we devise a novel adaptive direction guidance module where explicit direction information is embedded. Besides, we propose to fuse final results with attention maps to make full use of the bidirectional information and the fusion can be regarded as an ensemble process. Secondly, a more economic global regional grammar is introduced to build the relationships among human joints globally. The local-to-global modeling scheme promotes the message passing in a progressive manner and boosts the performance by a large margin. Promising results are achieved on MPII, LSP and COCO benchmarks.","PeriodicalId":73307,"journal":{"name":"IEEE transactions on biometrics, behavior, and identity science","volume":"5 4","pages":"593-605"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Progressive Direction-Aware Pose Grammar for Human Pose Estimation\",\"authors\":\"Lu Zhou;Yingying Chen;Jinqiao Wang\",\"doi\":\"10.1109/TBIOM.2023.3315509\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Human pose estimation is challenged by lots of factors such as complex articulation, occlusion and so on. Generally, message passing among human joints plays an important role in rectifying the wrong detection caused by referred challenges. In this paper, we propose a progressive direction-aware pose grammar model which performs message passing by building the pose grammar in a novel fashion. Firstly, a multi-scale Bi-C3D pose grammar module is proposed to promote message passing among human joints within a local range. We propose to conduct message passing by means of 3D convolution (C3D) which proves to be more effective compared with other sequential modeling techniques. To facilitate the message passing, we devise a novel adaptive direction guidance module where explicit direction information is embedded. Besides, we propose to fuse final results with attention maps to make full use of the bidirectional information and the fusion can be regarded as an ensemble process. Secondly, a more economic global regional grammar is introduced to build the relationships among human joints globally. The local-to-global modeling scheme promotes the message passing in a progressive manner and boosts the performance by a large margin. Promising results are achieved on MPII, LSP and COCO benchmarks.\",\"PeriodicalId\":73307,\"journal\":{\"name\":\"IEEE transactions on biometrics, behavior, and identity science\",\"volume\":\"5 4\",\"pages\":\"593-605\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on biometrics, behavior, and identity science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10251415/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on biometrics, behavior, and identity science","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10251415/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Progressive Direction-Aware Pose Grammar for Human Pose Estimation
Human pose estimation is challenged by lots of factors such as complex articulation, occlusion and so on. Generally, message passing among human joints plays an important role in rectifying the wrong detection caused by referred challenges. In this paper, we propose a progressive direction-aware pose grammar model which performs message passing by building the pose grammar in a novel fashion. Firstly, a multi-scale Bi-C3D pose grammar module is proposed to promote message passing among human joints within a local range. We propose to conduct message passing by means of 3D convolution (C3D) which proves to be more effective compared with other sequential modeling techniques. To facilitate the message passing, we devise a novel adaptive direction guidance module where explicit direction information is embedded. Besides, we propose to fuse final results with attention maps to make full use of the bidirectional information and the fusion can be regarded as an ensemble process. Secondly, a more economic global regional grammar is introduced to build the relationships among human joints globally. The local-to-global modeling scheme promotes the message passing in a progressive manner and boosts the performance by a large margin. Promising results are achieved on MPII, LSP and COCO benchmarks.