一类非绿弹性不可压缩弹性体的通解:大弹性变形的情况

IF 0.8
R Bustamante
{"title":"一类非绿弹性不可压缩弹性体的通解:大弹性变形的情况","authors":"R Bustamante","doi":"10.1093/qjmam/hbaa006","DOIUrl":null,"url":null,"abstract":"SUMMARY Some universal solutions are studied for a new class of elastic bodies, wherein the Hencky strain tensor is assumed to be a function of the Kirchhoff stress tensor, considering in particular the case of assuming the bodies to be isotropic and incompressible. It is shown that the families of universal solutions found in the classical theory of nonlinear elasticity, are also universal solutions for this new type of constitutive equation.","PeriodicalId":92460,"journal":{"name":"The quarterly journal of mechanics and applied mathematics","volume":"73 1","pages":"177-199"},"PeriodicalIF":0.8000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/qjmam/hbaa006","citationCount":"4","resultStr":"{\"title\":\"Some Universal Solutions for a Class of Incompressible Elastic Body that is Not Green Elastic: The Case of Large Elastic Deformations\",\"authors\":\"R Bustamante\",\"doi\":\"10.1093/qjmam/hbaa006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SUMMARY Some universal solutions are studied for a new class of elastic bodies, wherein the Hencky strain tensor is assumed to be a function of the Kirchhoff stress tensor, considering in particular the case of assuming the bodies to be isotropic and incompressible. It is shown that the families of universal solutions found in the classical theory of nonlinear elasticity, are also universal solutions for this new type of constitutive equation.\",\"PeriodicalId\":92460,\"journal\":{\"name\":\"The quarterly journal of mechanics and applied mathematics\",\"volume\":\"73 1\",\"pages\":\"177-199\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2020-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1093/qjmam/hbaa006\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The quarterly journal of mechanics and applied mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9254198/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The quarterly journal of mechanics and applied mathematics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/9254198/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

研究了一类新的弹性体的通解,其中Hencky应变张量被假设为Kirchhoff应力张量的函数,特别考虑了弹性体是各向同性和不可压缩的情况。证明了经典非线性弹性理论中的通解族也是这种新型本构方程的通解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some Universal Solutions for a Class of Incompressible Elastic Body that is Not Green Elastic: The Case of Large Elastic Deformations
SUMMARY Some universal solutions are studied for a new class of elastic bodies, wherein the Hencky strain tensor is assumed to be a function of the Kirchhoff stress tensor, considering in particular the case of assuming the bodies to be isotropic and incompressible. It is shown that the families of universal solutions found in the classical theory of nonlinear elasticity, are also universal solutions for this new type of constitutive equation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信