E. Mayoral-Villa, C. E. Alvarado-Rodríguez, F. Pahuamba-Valdez, J. Klapp, A. M. Gómez-Torres, E. Del Valle-Gallegos, A. Gómez-Villanueva
{"title":"多相系统传热研究中的双物理性能评价及其在核反应堆中的应用","authors":"E. Mayoral-Villa, C. E. Alvarado-Rodríguez, F. Pahuamba-Valdez, J. Klapp, A. M. Gómez-Torres, E. Del Valle-Gallegos, A. Gómez-Villanueva","doi":"10.1007/s40571-022-00476-8","DOIUrl":null,"url":null,"abstract":"<div><p>For this work, we condense current endeavors and improvements in the expansion of applications of the DualSPHysics code to nuclear reactor safety analysis, that includes the analysis of very complex multiphysical phenomena, involving, in some cases, a highly nonlinear deformation. Computational fluid dynamic (CFD) codes have been developed to analyze some phenomena in nuclear reactors with very good performance; however, this kind of method, based on a well-defined mesh, presents some restrictions when physical phenomena like thermal expansion change the dimensions of the system. The smoothed particle hydrodynamics (SPH) formulation could represent an option to analyze with more precision some physical phenomena in nuclear reactors where a rigid mesh cannot fully represent the system. The DualSPHysics code has shown to be a real and robust alternative, since it involves a free mesh approach, and the numerical method is very well parallelized in both computational and graphical processing units (CPU and GPU). Five cases have been chosen and studied to validate the developments in the code. The results show an exceptionally good approximation with other simulation approaches and with experimental observations. Based on the analyzed cases, the potential applications for nuclear reactors are discussed. As a result, a development path for the DualSPHysics code has been identified as a starting point to further apply the code in nuclear safety analysis as an innovative technique in the field.</p></div>","PeriodicalId":524,"journal":{"name":"Computational Particle Mechanics","volume":"9 5","pages":"1085 - 1103"},"PeriodicalIF":2.8000,"publicationDate":"2022-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluating DualSPHysics performance implemented in the study of heat transfer in multiphase systems with applications in nuclear reactors\",\"authors\":\"E. Mayoral-Villa, C. E. Alvarado-Rodríguez, F. Pahuamba-Valdez, J. Klapp, A. M. Gómez-Torres, E. Del Valle-Gallegos, A. Gómez-Villanueva\",\"doi\":\"10.1007/s40571-022-00476-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>For this work, we condense current endeavors and improvements in the expansion of applications of the DualSPHysics code to nuclear reactor safety analysis, that includes the analysis of very complex multiphysical phenomena, involving, in some cases, a highly nonlinear deformation. Computational fluid dynamic (CFD) codes have been developed to analyze some phenomena in nuclear reactors with very good performance; however, this kind of method, based on a well-defined mesh, presents some restrictions when physical phenomena like thermal expansion change the dimensions of the system. The smoothed particle hydrodynamics (SPH) formulation could represent an option to analyze with more precision some physical phenomena in nuclear reactors where a rigid mesh cannot fully represent the system. The DualSPHysics code has shown to be a real and robust alternative, since it involves a free mesh approach, and the numerical method is very well parallelized in both computational and graphical processing units (CPU and GPU). Five cases have been chosen and studied to validate the developments in the code. The results show an exceptionally good approximation with other simulation approaches and with experimental observations. Based on the analyzed cases, the potential applications for nuclear reactors are discussed. As a result, a development path for the DualSPHysics code has been identified as a starting point to further apply the code in nuclear safety analysis as an innovative technique in the field.</p></div>\",\"PeriodicalId\":524,\"journal\":{\"name\":\"Computational Particle Mechanics\",\"volume\":\"9 5\",\"pages\":\"1085 - 1103\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2022-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Particle Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40571-022-00476-8\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Particle Mechanics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s40571-022-00476-8","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Evaluating DualSPHysics performance implemented in the study of heat transfer in multiphase systems with applications in nuclear reactors
For this work, we condense current endeavors and improvements in the expansion of applications of the DualSPHysics code to nuclear reactor safety analysis, that includes the analysis of very complex multiphysical phenomena, involving, in some cases, a highly nonlinear deformation. Computational fluid dynamic (CFD) codes have been developed to analyze some phenomena in nuclear reactors with very good performance; however, this kind of method, based on a well-defined mesh, presents some restrictions when physical phenomena like thermal expansion change the dimensions of the system. The smoothed particle hydrodynamics (SPH) formulation could represent an option to analyze with more precision some physical phenomena in nuclear reactors where a rigid mesh cannot fully represent the system. The DualSPHysics code has shown to be a real and robust alternative, since it involves a free mesh approach, and the numerical method is very well parallelized in both computational and graphical processing units (CPU and GPU). Five cases have been chosen and studied to validate the developments in the code. The results show an exceptionally good approximation with other simulation approaches and with experimental observations. Based on the analyzed cases, the potential applications for nuclear reactors are discussed. As a result, a development path for the DualSPHysics code has been identified as a starting point to further apply the code in nuclear safety analysis as an innovative technique in the field.
期刊介绍:
GENERAL OBJECTIVES: Computational Particle Mechanics (CPM) is a quarterly journal with the goal of publishing full-length original articles addressing the modeling and simulation of systems involving particles and particle methods. The goal is to enhance communication among researchers in the applied sciences who use "particles'''' in one form or another in their research.
SPECIFIC OBJECTIVES: Particle-based materials and numerical methods have become wide-spread in the natural and applied sciences, engineering, biology. The term "particle methods/mechanics'''' has now come to imply several different things to researchers in the 21st century, including:
(a) Particles as a physical unit in granular media, particulate flows, plasmas, swarms, etc.,
(b) Particles representing material phases in continua at the meso-, micro-and nano-scale and
(c) Particles as a discretization unit in continua and discontinua in numerical methods such as
Discrete Element Methods (DEM), Particle Finite Element Methods (PFEM), Molecular Dynamics (MD), and Smoothed Particle Hydrodynamics (SPH), to name a few.