短字符和和Pólya-Vinogradov不等式

IF 0.6 4区 数学 Q3 MATHEMATICS
Alexander P Mangerel
{"title":"短字符和和Pólya-Vinogradov不等式","authors":"Alexander P Mangerel","doi":"10.1093/qmath/haaa031","DOIUrl":null,"url":null,"abstract":"We show in a quantitative way that any odd primitive character χ modulo q of fixed order g ≥ 2 satisfies the property that if the Pólya–Vinogradov inequality for χ can be improved to \n<tex>$$\\begin{equation*} \\max_{1 \\leq t \\leq q} \\left|\\sum_{n \\leq t} \\chi(n)\\right| = o_{q \\rightarrow \\infty}(\\sqrt{q}\\log q) \\end{equation*}$$</tex>\n then for any ɛ > 0 one may exhibit cancellation in partial sums of χ on the interval [1, t] whenever \n<tex>$t \\gt q^{\\varepsilon}$</tex>\n, i.e., \n<tex>$$\\begin{equation*} \\sum_{n \\leq t} \\chi(n) = o_{q \\rightarrow \\infty}(t)\\ \\text{for all } t \\gt q^{\\varepsilon}. \\end{equation*}$$</tex>\n We also prove a converse implication, to the effect that if all odd primitive characters of fixed order dividing g exhibit cancellation in short sums then the Pólya–Vinogradov inequality can be improved for all odd primitive characters of order g. Some applications are also discussed.","PeriodicalId":54522,"journal":{"name":"Quarterly Journal of Mathematics","volume":"71 1","pages":"1281-1308"},"PeriodicalIF":0.6000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Short Character Sums and the Pólya–Vinogradov Inequality\",\"authors\":\"Alexander P Mangerel\",\"doi\":\"10.1093/qmath/haaa031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show in a quantitative way that any odd primitive character χ modulo q of fixed order g ≥ 2 satisfies the property that if the Pólya–Vinogradov inequality for χ can be improved to \\n<tex>$$\\\\begin{equation*} \\\\max_{1 \\\\leq t \\\\leq q} \\\\left|\\\\sum_{n \\\\leq t} \\\\chi(n)\\\\right| = o_{q \\\\rightarrow \\\\infty}(\\\\sqrt{q}\\\\log q) \\\\end{equation*}$$</tex>\\n then for any ɛ > 0 one may exhibit cancellation in partial sums of χ on the interval [1, t] whenever \\n<tex>$t \\\\gt q^{\\\\varepsilon}$</tex>\\n, i.e., \\n<tex>$$\\\\begin{equation*} \\\\sum_{n \\\\leq t} \\\\chi(n) = o_{q \\\\rightarrow \\\\infty}(t)\\\\ \\\\text{for all } t \\\\gt q^{\\\\varepsilon}. \\\\end{equation*}$$</tex>\\n We also prove a converse implication, to the effect that if all odd primitive characters of fixed order dividing g exhibit cancellation in short sums then the Pólya–Vinogradov inequality can be improved for all odd primitive characters of order g. Some applications are also discussed.\",\"PeriodicalId\":54522,\"journal\":{\"name\":\"Quarterly Journal of Mathematics\",\"volume\":\"71 1\",\"pages\":\"1281-1308\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2020-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quarterly Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9434349/\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://ieeexplore.ieee.org/document/9434349/","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 6

摘要

我们用定量的方法证明了任意定阶g≥2的奇基字符χ模q满足这样的性质:如果χ的Pólya-Vinogradov不等式可以改进为$$\begin{equation*} \max_{1 \leq t \leq q} \left|\sum_{n \leq t} \chi(n)\right| = o_{q \rightarrow \infty}(\sqrt{q}\log q) \end{equation*}$$,那么对于任意的_ > 0,在区间[1,t]上,当$t \gt q^{\varepsilon}$,即$$\begin{equation*} \sum_{n \leq t} \chi(n) = o_{q \rightarrow \infty}(t)\ \text{for all } t \gt q^{\varepsilon}. \end{equation*}$$时,在χ的部分和上可以表现为消去。结果表明,如果除g的所有定阶奇基字符都在短和中相互抵消,则对所有g阶奇基字符的Pólya-Vinogradov不等式可以得到改进,并讨论了一些应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Short Character Sums and the Pólya–Vinogradov Inequality
We show in a quantitative way that any odd primitive character χ modulo q of fixed order g ≥ 2 satisfies the property that if the Pólya–Vinogradov inequality for χ can be improved to $$\begin{equation*} \max_{1 \leq t \leq q} \left|\sum_{n \leq t} \chi(n)\right| = o_{q \rightarrow \infty}(\sqrt{q}\log q) \end{equation*}$$ then for any ɛ > 0 one may exhibit cancellation in partial sums of χ on the interval [1, t] whenever $t \gt q^{\varepsilon}$ , i.e., $$\begin{equation*} \sum_{n \leq t} \chi(n) = o_{q \rightarrow \infty}(t)\ \text{for all } t \gt q^{\varepsilon}. \end{equation*}$$ We also prove a converse implication, to the effect that if all odd primitive characters of fixed order dividing g exhibit cancellation in short sums then the Pólya–Vinogradov inequality can be improved for all odd primitive characters of order g. Some applications are also discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
36
审稿时长
6-12 weeks
期刊介绍: The Quarterly Journal of Mathematics publishes original contributions to pure mathematics. All major areas of pure mathematics are represented on the editorial board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信