广义平面应变变形下各向异性弹性抛物不均匀性的格林函数

IF 0.8
X Wang;P Schiavone
{"title":"广义平面应变变形下各向异性弹性抛物不均匀性的格林函数","authors":"X Wang;P Schiavone","doi":"10.1093/qjmam/hbab008","DOIUrl":null,"url":null,"abstract":"On the basis of the Stroh sextic formalism, we propose a novel method to derive Green's functions for a two-phase composite composed of an anisotropic elastic parabolic inhomogeneity perfectly bonded to an anisotropic elastic matrix. The composite is subjected to a line force and a line dislocation, which can be located anywhere inside or outside the inhomogeneity or on the parabolic interface itself. Explicit expressions describing the analytic vector function defined in the parabolic inhomogeneity are derived for each of the three aforementioned cases associated with the location of the line force and line dislocation. When the line dislocation is located inside the parabolic inhomogeneity, the image force acting on the line dislocation is expediently derived using the Peach–Koehler formula.","PeriodicalId":92460,"journal":{"name":"The quarterly journal of mechanics and applied mathematics","volume":"74 3","pages":"351-366"},"PeriodicalIF":0.8000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Green's functions for an anisotropic elastic parabolic inhomogeneity under generalised plane strain deformations\",\"authors\":\"X Wang;P Schiavone\",\"doi\":\"10.1093/qjmam/hbab008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"On the basis of the Stroh sextic formalism, we propose a novel method to derive Green's functions for a two-phase composite composed of an anisotropic elastic parabolic inhomogeneity perfectly bonded to an anisotropic elastic matrix. The composite is subjected to a line force and a line dislocation, which can be located anywhere inside or outside the inhomogeneity or on the parabolic interface itself. Explicit expressions describing the analytic vector function defined in the parabolic inhomogeneity are derived for each of the three aforementioned cases associated with the location of the line force and line dislocation. When the line dislocation is located inside the parabolic inhomogeneity, the image force acting on the line dislocation is expediently derived using the Peach–Koehler formula.\",\"PeriodicalId\":92460,\"journal\":{\"name\":\"The quarterly journal of mechanics and applied mathematics\",\"volume\":\"74 3\",\"pages\":\"351-366\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The quarterly journal of mechanics and applied mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9579153/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The quarterly journal of mechanics and applied mathematics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/9579153/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在Stroh六分形形式的基础上,我们提出了一种新的方法来推导由各向异性弹性抛物不均匀性与各向异性弹性矩阵完美结合而成的两相复合材料的格林函数。复合材料受到线力和线位错的作用,这些位错可以位于非均匀性内部或外部的任何地方,也可以位于抛物面界面本身。对于上述三种与线力和线位错位置相关的情况,导出了描述抛物线不均匀性中定义的解析向量函数的显式表达式。当线位错位于抛物线非均匀性内部时,利用Peach-Koehler公式可以方便地推导出作用在线位错上的像力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Green's functions for an anisotropic elastic parabolic inhomogeneity under generalised plane strain deformations
On the basis of the Stroh sextic formalism, we propose a novel method to derive Green's functions for a two-phase composite composed of an anisotropic elastic parabolic inhomogeneity perfectly bonded to an anisotropic elastic matrix. The composite is subjected to a line force and a line dislocation, which can be located anywhere inside or outside the inhomogeneity or on the parabolic interface itself. Explicit expressions describing the analytic vector function defined in the parabolic inhomogeneity are derived for each of the three aforementioned cases associated with the location of the line force and line dislocation. When the line dislocation is located inside the parabolic inhomogeneity, the image force acting on the line dislocation is expediently derived using the Peach–Koehler formula.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信