{"title":"椭圆曲线上的Tamagawa积","authors":"Michael Griffin;Ken Onowei-Lun Tsai;Wei-Lun Tsai","doi":"10.1093/qmath/haab042","DOIUrl":null,"url":null,"abstract":"We explicitly construct the Dirichlet series \n<tex>$$\\begin{equation*}L_{\\mathrm{Tam}}(s):=\\sum_{m=1}^{\\infty}\\frac{P_{\\mathrm{Tam}}(m)}{m^s},\\end{equation*}$$</tex>\n where \n<tex>$P_{\\mathrm{Tam}}(m)$</tex>\n is the proportion of elliptic curves \n<tex>$E/\\mathbb{Q}$</tex>\n in short Weierstrass form with Tamagawa product m. Although there are no \n<tex>$E/\\mathbb{Q}$</tex>\n with everywhere good reduction, we prove that the proportion with trivial Tamagawa product is \n<tex>$P_{\\mathrm{Tam}}(1)={0.5053\\dots}$</tex>\n. As a corollary, we find that \n<tex>$L_{\\mathrm{Tam}}(-1)={1.8193\\dots}$</tex>\n is the average Tamagawa product for elliptic curves over \n<tex>$\\mathbb{Q}$</tex>\n. We give an application of these results to canonical and Weil heights.","PeriodicalId":54522,"journal":{"name":"Quarterly Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Tamagawa Products of Elliptic Curves Over ℚ\",\"authors\":\"Michael Griffin;Ken Onowei-Lun Tsai;Wei-Lun Tsai\",\"doi\":\"10.1093/qmath/haab042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We explicitly construct the Dirichlet series \\n<tex>$$\\\\begin{equation*}L_{\\\\mathrm{Tam}}(s):=\\\\sum_{m=1}^{\\\\infty}\\\\frac{P_{\\\\mathrm{Tam}}(m)}{m^s},\\\\end{equation*}$$</tex>\\n where \\n<tex>$P_{\\\\mathrm{Tam}}(m)$</tex>\\n is the proportion of elliptic curves \\n<tex>$E/\\\\mathbb{Q}$</tex>\\n in short Weierstrass form with Tamagawa product m. Although there are no \\n<tex>$E/\\\\mathbb{Q}$</tex>\\n with everywhere good reduction, we prove that the proportion with trivial Tamagawa product is \\n<tex>$P_{\\\\mathrm{Tam}}(1)={0.5053\\\\dots}$</tex>\\n. As a corollary, we find that \\n<tex>$L_{\\\\mathrm{Tam}}(-1)={1.8193\\\\dots}$</tex>\\n is the average Tamagawa product for elliptic curves over \\n<tex>$\\\\mathbb{Q}$</tex>\\n. We give an application of these results to canonical and Weil heights.\",\"PeriodicalId\":54522,\"journal\":{\"name\":\"Quarterly Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quarterly Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9690936/\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://ieeexplore.ieee.org/document/9690936/","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
We explicitly construct the Dirichlet series
$$\begin{equation*}L_{\mathrm{Tam}}(s):=\sum_{m=1}^{\infty}\frac{P_{\mathrm{Tam}}(m)}{m^s},\end{equation*}$$
where
$P_{\mathrm{Tam}}(m)$
is the proportion of elliptic curves
$E/\mathbb{Q}$
in short Weierstrass form with Tamagawa product m. Although there are no
$E/\mathbb{Q}$
with everywhere good reduction, we prove that the proportion with trivial Tamagawa product is
$P_{\mathrm{Tam}}(1)={0.5053\dots}$
. As a corollary, we find that
$L_{\mathrm{Tam}}(-1)={1.8193\dots}$
is the average Tamagawa product for elliptic curves over
$\mathbb{Q}$
. We give an application of these results to canonical and Weil heights.
期刊介绍:
The Quarterly Journal of Mathematics publishes original contributions to pure mathematics. All major areas of pure mathematics are represented on the editorial board.