Dirichlet l -函数的二阶矩、子群上的字符和及相对类数上的上界

IF 0.6 4区 数学 Q3 MATHEMATICS
Stéphane R Louboutin;Marc Munsch
{"title":"Dirichlet l -函数的二阶矩、子群上的字符和及相对类数上的上界","authors":"Stéphane R Louboutin;Marc Munsch","doi":"10.1093/qmath/haab010","DOIUrl":null,"url":null,"abstract":"We prove an asymptotic formula for the mean-square average of L-functions associated with subgroups of characters of sufficiently large size. Our proof relies on the study of certain character sums \n<tex>${\\mathcal{A}}(p,d)$</tex>\n recently introduced by E. Elma, where p ≥ 3 is prime and d ≥ 1 is any odd divisor of p − 1. We obtain an asymptotic formula for \n<tex>${\\mathcal{A}}(p,d),$</tex>\n which holds true for any odd divisor d of p − 1, thus removing E. Elma's restrictions on the size of d. This answers a question raised in Elma's paper. Our proof relies on both estimates on the frequency of large character sums and techniques from the theory of uniform distribution. As an application, in the range \n<tex>$1\\leq d\\leq\\frac{\\log p}{3\\log\\log p}$</tex>\n, we obtain a significant improvement \n<tex>$h_{p,d}^- \\leq 2(\\frac{(1+o(1))p}{24})^{m/4}$</tex>\n over the trivial bound \n<tex>$h_{p,d}^- \\ll (\\frac{dp}{24} )^{m/4}$</tex>\n on the relative class numbers of the imaginary number fields of conductor \n<tex>$p\\equiv 1\\mod{2d}$</tex>\n and degree \n<tex>$m=(p-1)/d$</tex>\n, where d ≥ 1 is odd.","PeriodicalId":54522,"journal":{"name":"Quarterly Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/qmath/haab010","citationCount":"4","resultStr":"{\"title\":\"Second Moment Of Dirichlet L-Functions, Character Sums Over Subgroups And Upper Bounds On Relative Class Numbers\",\"authors\":\"Stéphane R Louboutin;Marc Munsch\",\"doi\":\"10.1093/qmath/haab010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove an asymptotic formula for the mean-square average of L-functions associated with subgroups of characters of sufficiently large size. Our proof relies on the study of certain character sums \\n<tex>${\\\\mathcal{A}}(p,d)$</tex>\\n recently introduced by E. Elma, where p ≥ 3 is prime and d ≥ 1 is any odd divisor of p − 1. We obtain an asymptotic formula for \\n<tex>${\\\\mathcal{A}}(p,d),$</tex>\\n which holds true for any odd divisor d of p − 1, thus removing E. Elma's restrictions on the size of d. This answers a question raised in Elma's paper. Our proof relies on both estimates on the frequency of large character sums and techniques from the theory of uniform distribution. As an application, in the range \\n<tex>$1\\\\leq d\\\\leq\\\\frac{\\\\log p}{3\\\\log\\\\log p}$</tex>\\n, we obtain a significant improvement \\n<tex>$h_{p,d}^- \\\\leq 2(\\\\frac{(1+o(1))p}{24})^{m/4}$</tex>\\n over the trivial bound \\n<tex>$h_{p,d}^- \\\\ll (\\\\frac{dp}{24} )^{m/4}$</tex>\\n on the relative class numbers of the imaginary number fields of conductor \\n<tex>$p\\\\equiv 1\\\\mod{2d}$</tex>\\n and degree \\n<tex>$m=(p-1)/d$</tex>\\n, where d ≥ 1 is odd.\",\"PeriodicalId\":54522,\"journal\":{\"name\":\"Quarterly Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1093/qmath/haab010\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quarterly Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9690911/\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://ieeexplore.ieee.org/document/9690911/","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

摘要

我们证明了与足够大的字符子群相关的l -函数的均方平均值的一个渐近公式。我们的证明依赖于E. Elma最近引入的某些特征和${\mathcal{A}}(p,d)$的研究,其中p≥3是素数,d≥1是p−1的任何奇因子。我们得到了${\mathcal{A}}(p,d),$的渐近公式,该公式适用于p−1的任何奇数因子d,从而消除了E. Elma对d大小的限制。这回答了Elma论文中提出的一个问题。我们的证明既依赖于对大字符和频率的估计,也依赖于均匀分布理论的技术。作为应用,在$1\leq d\leq\frac{\log p}{3\log\log p}$范围内,我们得到了导体$p\equiv 1\mod{2d}$和度$m=(p-1)/d$的虚数场相对类数在平凡界$h_{p,d}^- \ll (\frac{dp}{24} )^{m/4}$上的显著改进$h_{p,d}^- \leq 2(\frac{(1+o(1))p}{24})^{m/4}$,其中d≥1为奇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Second Moment Of Dirichlet L-Functions, Character Sums Over Subgroups And Upper Bounds On Relative Class Numbers
We prove an asymptotic formula for the mean-square average of L-functions associated with subgroups of characters of sufficiently large size. Our proof relies on the study of certain character sums ${\mathcal{A}}(p,d)$ recently introduced by E. Elma, where p ≥ 3 is prime and d ≥ 1 is any odd divisor of p − 1. We obtain an asymptotic formula for ${\mathcal{A}}(p,d),$ which holds true for any odd divisor d of p − 1, thus removing E. Elma's restrictions on the size of d. This answers a question raised in Elma's paper. Our proof relies on both estimates on the frequency of large character sums and techniques from the theory of uniform distribution. As an application, in the range $1\leq d\leq\frac{\log p}{3\log\log p}$ , we obtain a significant improvement $h_{p,d}^- \leq 2(\frac{(1+o(1))p}{24})^{m/4}$ over the trivial bound $h_{p,d}^- \ll (\frac{dp}{24} )^{m/4}$ on the relative class numbers of the imaginary number fields of conductor $p\equiv 1\mod{2d}$ and degree $m=(p-1)/d$ , where d ≥ 1 is odd.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
36
审稿时长
6-12 weeks
期刊介绍: The Quarterly Journal of Mathematics publishes original contributions to pure mathematics. All major areas of pure mathematics are represented on the editorial board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信