接近相似性的时间

IF 0.8
Joseph J Webber;Herbert E Huppert
{"title":"接近相似性的时间","authors":"Joseph J Webber;Herbert E Huppert","doi":"10.1093/qjmam/hbz019","DOIUrl":null,"url":null,"abstract":"In a recent article, Ball and Huppert (J. Fluid Mech., 874, 2019) introduced a novel method for ascertaining the characteristic timescale over which the similarity solution to a given time-dependent nonlinear differential equation converges to the actual solution, obtained by numerical integration, starting from given initial conditions. In this article, we apply this method to a range of different partial differential equations describing propagating gravity currents of fixed volume as well as modifying the techniques to apply to situations for which convergence to the numerical solution is oscillatory, as appropriate for gravity currents propagating at large Reynolds numbers. We investigate properties of convergence in all of these cases, including how different initial geometries affect the rate at which the two solutions agree. It is noted that geometries where the flow is no longer unidirectional take longer to converge. A method of time-shifting the similarity solution is introduced to improve the accuracy of the approximation given by the similarity solution, and also provide an upper bound on the percentage disagreement over all time.","PeriodicalId":92460,"journal":{"name":"The quarterly journal of mechanics and applied mathematics","volume":"73 1","pages":"1-23"},"PeriodicalIF":0.8000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/qjmam/hbz019","citationCount":"3","resultStr":"{\"title\":\"Time to Approach Similarity\",\"authors\":\"Joseph J Webber;Herbert E Huppert\",\"doi\":\"10.1093/qjmam/hbz019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In a recent article, Ball and Huppert (J. Fluid Mech., 874, 2019) introduced a novel method for ascertaining the characteristic timescale over which the similarity solution to a given time-dependent nonlinear differential equation converges to the actual solution, obtained by numerical integration, starting from given initial conditions. In this article, we apply this method to a range of different partial differential equations describing propagating gravity currents of fixed volume as well as modifying the techniques to apply to situations for which convergence to the numerical solution is oscillatory, as appropriate for gravity currents propagating at large Reynolds numbers. We investigate properties of convergence in all of these cases, including how different initial geometries affect the rate at which the two solutions agree. It is noted that geometries where the flow is no longer unidirectional take longer to converge. A method of time-shifting the similarity solution is introduced to improve the accuracy of the approximation given by the similarity solution, and also provide an upper bound on the percentage disagreement over all time.\",\"PeriodicalId\":92460,\"journal\":{\"name\":\"The quarterly journal of mechanics and applied mathematics\",\"volume\":\"73 1\",\"pages\":\"1-23\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2020-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1093/qjmam/hbz019\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The quarterly journal of mechanics and applied mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9108364/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The quarterly journal of mechanics and applied mathematics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/9108364/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在最近的一篇文章中,Ball和Huppert(J.Fluid Mech.,8741919)介绍了一种新的方法,用于确定特征时间尺度,在该时间尺度上,给定的含时非线性微分方程的相似解收敛于通过数值积分从给定的初始条件开始获得的实际解。在这篇文章中,我们将这种方法应用于一系列不同的偏微分方程,这些方程描述了固定体积的传播重力流,并修改了适用于数值解的收敛是振荡的情况的技术,适用于以大雷诺数传播的重力流。我们研究了所有这些情况下的收敛性,包括不同的初始几何形状如何影响两个解的一致性。值得注意的是,流动不再单向的几何形状需要更长的时间才能收敛。引入了一种对相似性解进行时移的方法,以提高相似性解给出的近似精度,并提供了所有时间内不一致百分比的上限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Time to Approach Similarity
In a recent article, Ball and Huppert (J. Fluid Mech., 874, 2019) introduced a novel method for ascertaining the characteristic timescale over which the similarity solution to a given time-dependent nonlinear differential equation converges to the actual solution, obtained by numerical integration, starting from given initial conditions. In this article, we apply this method to a range of different partial differential equations describing propagating gravity currents of fixed volume as well as modifying the techniques to apply to situations for which convergence to the numerical solution is oscillatory, as appropriate for gravity currents propagating at large Reynolds numbers. We investigate properties of convergence in all of these cases, including how different initial geometries affect the rate at which the two solutions agree. It is noted that geometries where the flow is no longer unidirectional take longer to converge. A method of time-shifting the similarity solution is introduced to improve the accuracy of the approximation given by the similarity solution, and also provide an upper bound on the percentage disagreement over all time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信