{"title":"捆绑衰减网络上传染病的流行阈值","authors":"Qinyi Chen;Mason A Porter;Naoki Masuda","doi":"10.1093/comnet/cnab031","DOIUrl":null,"url":null,"abstract":"In the study of infectious diseases on networks, researchers calculate epidemic thresholds to help forecast whether or not a disease will eventually infect a large fraction of a population. Because network structure typically changes with time, which fundamentally influences the dynamics of spreading processes and in turn affects epidemic thresholds for disease propagation, it is important to examine epidemic thresholds in models of disease spread on temporal networks. Most existing studies of epidemic thresholds in temporal networks have focused on models in discrete time, but most real-world networked systems evolve continuously with time. In our work, we encode the continuous time-dependence of networks in the evaluation of the epidemic threshold of a susceptible–infected–susceptible (SIS) process by studying an SIS model on tie-decay networks. We derive the epidemic-threshold condition of this model, and we perform numerical experiments to verify it. We also examine how different factors—the decay coefficients of the tie strengths in a network, the frequency of the interactions between the nodes in the network, and the sparsity of the underlying social network on which interactions occur—lead to decreases or increases of the critical values of the threshold and hence contribute to facilitating or impeding the spread of a disease. We thereby demonstrate how the features of tie-decay networks alter the outcome of disease spread.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Epidemic thresholds of infectious diseases on tie-decay networks\",\"authors\":\"Qinyi Chen;Mason A Porter;Naoki Masuda\",\"doi\":\"10.1093/comnet/cnab031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the study of infectious diseases on networks, researchers calculate epidemic thresholds to help forecast whether or not a disease will eventually infect a large fraction of a population. Because network structure typically changes with time, which fundamentally influences the dynamics of spreading processes and in turn affects epidemic thresholds for disease propagation, it is important to examine epidemic thresholds in models of disease spread on temporal networks. Most existing studies of epidemic thresholds in temporal networks have focused on models in discrete time, but most real-world networked systems evolve continuously with time. In our work, we encode the continuous time-dependence of networks in the evaluation of the epidemic threshold of a susceptible–infected–susceptible (SIS) process by studying an SIS model on tie-decay networks. We derive the epidemic-threshold condition of this model, and we perform numerical experiments to verify it. We also examine how different factors—the decay coefficients of the tie strengths in a network, the frequency of the interactions between the nodes in the network, and the sparsity of the underlying social network on which interactions occur—lead to decreases or increases of the critical values of the threshold and hence contribute to facilitating or impeding the spread of a disease. We thereby demonstrate how the features of tie-decay networks alter the outcome of disease spread.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9717031/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://ieeexplore.ieee.org/document/9717031/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Epidemic thresholds of infectious diseases on tie-decay networks
In the study of infectious diseases on networks, researchers calculate epidemic thresholds to help forecast whether or not a disease will eventually infect a large fraction of a population. Because network structure typically changes with time, which fundamentally influences the dynamics of spreading processes and in turn affects epidemic thresholds for disease propagation, it is important to examine epidemic thresholds in models of disease spread on temporal networks. Most existing studies of epidemic thresholds in temporal networks have focused on models in discrete time, but most real-world networked systems evolve continuously with time. In our work, we encode the continuous time-dependence of networks in the evaluation of the epidemic threshold of a susceptible–infected–susceptible (SIS) process by studying an SIS model on tie-decay networks. We derive the epidemic-threshold condition of this model, and we perform numerical experiments to verify it. We also examine how different factors—the decay coefficients of the tie strengths in a network, the frequency of the interactions between the nodes in the network, and the sparsity of the underlying social network on which interactions occur—lead to decreases or increases of the critical values of the threshold and hence contribute to facilitating or impeding the spread of a disease. We thereby demonstrate how the features of tie-decay networks alter the outcome of disease spread.