带地标的应变最小化双曲网络嵌入

IF 2.2 4区 数学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Martin Keller-Ressel;Stephanie Nargang
{"title":"带地标的应变最小化双曲网络嵌入","authors":"Martin Keller-Ressel;Stephanie Nargang","doi":"10.1093/comnet/cnad002","DOIUrl":null,"url":null,"abstract":"We introduce L-hydra (landmarked hyperbolic distance recovery and approximation), a method for embedding network- or distance-based data into hyperbolic space, which requires only the distance measurements to a few ‘landmark nodes’. This landmark heuristic makes L-hydra applicable to large-scale graphs and improves upon previously introduced methods. As a mathematical justification, we show that a point configuration in \n<tex>$d$</tex>\n-dimensional hyperbolic space can be perfectly recovered (up to isometry) from distance measurements to just \n<tex>$d+1$</tex>\n landmarks. We also show that L-hydra solves a two-stage strain-minimization problem, similar to our previous (unlandmarked) method ‘hydra’. Testing on real network data, we show that L-hydra is an order of magnitude faster than the existing hyperbolic embedding methods and scales linearly in the number of nodes. While the embedding error of L-hydra is higher than the error of the existing methods, we introduce an extension, L-hydra+, which outperforms the existing methods in both runtime and embedding quality.","PeriodicalId":15442,"journal":{"name":"Journal of complex networks","volume":"11 1","pages":"537-211"},"PeriodicalIF":2.2000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strain-minimizing hyperbolic network embeddings with landmarks\",\"authors\":\"Martin Keller-Ressel;Stephanie Nargang\",\"doi\":\"10.1093/comnet/cnad002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce L-hydra (landmarked hyperbolic distance recovery and approximation), a method for embedding network- or distance-based data into hyperbolic space, which requires only the distance measurements to a few ‘landmark nodes’. This landmark heuristic makes L-hydra applicable to large-scale graphs and improves upon previously introduced methods. As a mathematical justification, we show that a point configuration in \\n<tex>$d$</tex>\\n-dimensional hyperbolic space can be perfectly recovered (up to isometry) from distance measurements to just \\n<tex>$d+1$</tex>\\n landmarks. We also show that L-hydra solves a two-stage strain-minimization problem, similar to our previous (unlandmarked) method ‘hydra’. Testing on real network data, we show that L-hydra is an order of magnitude faster than the existing hyperbolic embedding methods and scales linearly in the number of nodes. While the embedding error of L-hydra is higher than the error of the existing methods, we introduce an extension, L-hydra+, which outperforms the existing methods in both runtime and embedding quality.\",\"PeriodicalId\":15442,\"journal\":{\"name\":\"Journal of complex networks\",\"volume\":\"11 1\",\"pages\":\"537-211\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of complex networks\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10068401/\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of complex networks","FirstCategoryId":"100","ListUrlMain":"https://ieeexplore.ieee.org/document/10068401/","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

我们介绍了L-hydra(地标双曲距离恢复和近似),这是一种将基于网络或距离的数据嵌入到双曲空间的方法,它只需要到几个“地标节点”的距离测量。这种具有里程碑意义的启发式方法使L-hydra适用于大规模图,并改进了以前介绍的方法。作为数学证明,我们证明了d维双曲空间中的点构型可以从距离测量完全恢复(直到等距)到仅d+1个地标。我们还表明,L-hydra解决了一个两阶段的应变最小化问题,类似于我们之前的(未标记的)方法' hydra '。在实际网络数据上的测试表明,L-hydra比现有的双曲嵌入方法快一个数量级,并且在节点数量上呈线性扩展。虽然L-hydra的嵌入误差高于现有方法,但我们引入了一个扩展,L-hydra+,在运行时间和嵌入质量上都优于现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Strain-minimizing hyperbolic network embeddings with landmarks
We introduce L-hydra (landmarked hyperbolic distance recovery and approximation), a method for embedding network- or distance-based data into hyperbolic space, which requires only the distance measurements to a few ‘landmark nodes’. This landmark heuristic makes L-hydra applicable to large-scale graphs and improves upon previously introduced methods. As a mathematical justification, we show that a point configuration in $d$ -dimensional hyperbolic space can be perfectly recovered (up to isometry) from distance measurements to just $d+1$ landmarks. We also show that L-hydra solves a two-stage strain-minimization problem, similar to our previous (unlandmarked) method ‘hydra’. Testing on real network data, we show that L-hydra is an order of magnitude faster than the existing hyperbolic embedding methods and scales linearly in the number of nodes. While the embedding error of L-hydra is higher than the error of the existing methods, we introduce an extension, L-hydra+, which outperforms the existing methods in both runtime and embedding quality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of complex networks
Journal of complex networks MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
CiteScore
4.20
自引率
9.50%
发文量
40
期刊介绍: Journal of Complex Networks publishes original articles and reviews with a significant contribution to the analysis and understanding of complex networks and its applications in diverse fields. Complex networks are loosely defined as networks with nontrivial topology and dynamics, which appear as the skeletons of complex systems in the real-world. The journal covers everything from the basic mathematical, physical and computational principles needed for studying complex networks to their applications leading to predictive models in molecular, biological, ecological, informational, engineering, social, technological and other systems. It includes, but is not limited to, the following topics: - Mathematical and numerical analysis of networks - Network theory and computer sciences - Structural analysis of networks - Dynamics on networks - Physical models on networks - Networks and epidemiology - Social, socio-economic and political networks - Ecological networks - Technological and infrastructural networks - Brain and tissue networks - Biological and molecular networks - Spatial networks - Techno-social networks i.e. online social networks, social networking sites, social media - Other applications of networks - Evolving networks - Multilayer networks - Game theory on networks - Biomedicine related networks - Animal social networks - Climate networks - Cognitive, language and informational network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信