{"title":"带地标的应变最小化双曲网络嵌入","authors":"Martin Keller-Ressel;Stephanie Nargang","doi":"10.1093/comnet/cnad002","DOIUrl":null,"url":null,"abstract":"We introduce L-hydra (landmarked hyperbolic distance recovery and approximation), a method for embedding network- or distance-based data into hyperbolic space, which requires only the distance measurements to a few ‘landmark nodes’. This landmark heuristic makes L-hydra applicable to large-scale graphs and improves upon previously introduced methods. As a mathematical justification, we show that a point configuration in \n<tex>$d$</tex>\n-dimensional hyperbolic space can be perfectly recovered (up to isometry) from distance measurements to just \n<tex>$d+1$</tex>\n landmarks. We also show that L-hydra solves a two-stage strain-minimization problem, similar to our previous (unlandmarked) method ‘hydra’. Testing on real network data, we show that L-hydra is an order of magnitude faster than the existing hyperbolic embedding methods and scales linearly in the number of nodes. While the embedding error of L-hydra is higher than the error of the existing methods, we introduce an extension, L-hydra+, which outperforms the existing methods in both runtime and embedding quality.","PeriodicalId":15442,"journal":{"name":"Journal of complex networks","volume":"11 1","pages":"537-211"},"PeriodicalIF":2.2000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strain-minimizing hyperbolic network embeddings with landmarks\",\"authors\":\"Martin Keller-Ressel;Stephanie Nargang\",\"doi\":\"10.1093/comnet/cnad002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce L-hydra (landmarked hyperbolic distance recovery and approximation), a method for embedding network- or distance-based data into hyperbolic space, which requires only the distance measurements to a few ‘landmark nodes’. This landmark heuristic makes L-hydra applicable to large-scale graphs and improves upon previously introduced methods. As a mathematical justification, we show that a point configuration in \\n<tex>$d$</tex>\\n-dimensional hyperbolic space can be perfectly recovered (up to isometry) from distance measurements to just \\n<tex>$d+1$</tex>\\n landmarks. We also show that L-hydra solves a two-stage strain-minimization problem, similar to our previous (unlandmarked) method ‘hydra’. Testing on real network data, we show that L-hydra is an order of magnitude faster than the existing hyperbolic embedding methods and scales linearly in the number of nodes. While the embedding error of L-hydra is higher than the error of the existing methods, we introduce an extension, L-hydra+, which outperforms the existing methods in both runtime and embedding quality.\",\"PeriodicalId\":15442,\"journal\":{\"name\":\"Journal of complex networks\",\"volume\":\"11 1\",\"pages\":\"537-211\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of complex networks\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10068401/\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of complex networks","FirstCategoryId":"100","ListUrlMain":"https://ieeexplore.ieee.org/document/10068401/","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Strain-minimizing hyperbolic network embeddings with landmarks
We introduce L-hydra (landmarked hyperbolic distance recovery and approximation), a method for embedding network- or distance-based data into hyperbolic space, which requires only the distance measurements to a few ‘landmark nodes’. This landmark heuristic makes L-hydra applicable to large-scale graphs and improves upon previously introduced methods. As a mathematical justification, we show that a point configuration in
$d$
-dimensional hyperbolic space can be perfectly recovered (up to isometry) from distance measurements to just
$d+1$
landmarks. We also show that L-hydra solves a two-stage strain-minimization problem, similar to our previous (unlandmarked) method ‘hydra’. Testing on real network data, we show that L-hydra is an order of magnitude faster than the existing hyperbolic embedding methods and scales linearly in the number of nodes. While the embedding error of L-hydra is higher than the error of the existing methods, we introduce an extension, L-hydra+, which outperforms the existing methods in both runtime and embedding quality.
期刊介绍:
Journal of Complex Networks publishes original articles and reviews with a significant contribution to the analysis and understanding of complex networks and its applications in diverse fields. Complex networks are loosely defined as networks with nontrivial topology and dynamics, which appear as the skeletons of complex systems in the real-world. The journal covers everything from the basic mathematical, physical and computational principles needed for studying complex networks to their applications leading to predictive models in molecular, biological, ecological, informational, engineering, social, technological and other systems. It includes, but is not limited to, the following topics: - Mathematical and numerical analysis of networks - Network theory and computer sciences - Structural analysis of networks - Dynamics on networks - Physical models on networks - Networks and epidemiology - Social, socio-economic and political networks - Ecological networks - Technological and infrastructural networks - Brain and tissue networks - Biological and molecular networks - Spatial networks - Techno-social networks i.e. online social networks, social networking sites, social media - Other applications of networks - Evolving networks - Multilayer networks - Game theory on networks - Biomedicine related networks - Animal social networks - Climate networks - Cognitive, language and informational network