二维和三维晶格中的波传播和均匀化:半解析方法

IF 0.8
A. A. Kutsenko;A. J. Nagy;X. Su;A. L. Shuvalov;A. N. Norris
{"title":"二维和三维晶格中的波传播和均匀化:半解析方法","authors":"A. A. Kutsenko;A. J. Nagy;X. Su;A. L. Shuvalov;A. N. Norris","doi":"10.1093/qjmam/hbx002","DOIUrl":null,"url":null,"abstract":"Wave motion in two- and three-dimensional periodic lattices of beam members supporting longitudinal and flexural waves is considered. An analytic method for solving the Bloch wave spectrum is developed, characterized by a generalized eigenvalue equation obtained by enforcing the Floquet condition. The dynamic stiffness matrix is shown to be explicitly Hermitian and to admit positive eigenvalues. Lattices with hexagonal, rectangular, tetrahedral and cubic unit cells are analyzed. The semi-analytical method can be asymptotically expanded for low frequency yielding explicit forms for the Christoffel matrix describing wave motion in the quasistatic limit.","PeriodicalId":92460,"journal":{"name":"The quarterly journal of mechanics and applied mathematics","volume":"70 2","pages":"131-151"},"PeriodicalIF":0.8000,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Wave Propagation and Homogenization in 2d and 3d Lattices: A Semi-Analytical Approach\",\"authors\":\"A. A. Kutsenko;A. J. Nagy;X. Su;A. L. Shuvalov;A. N. Norris\",\"doi\":\"10.1093/qjmam/hbx002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wave motion in two- and three-dimensional periodic lattices of beam members supporting longitudinal and flexural waves is considered. An analytic method for solving the Bloch wave spectrum is developed, characterized by a generalized eigenvalue equation obtained by enforcing the Floquet condition. The dynamic stiffness matrix is shown to be explicitly Hermitian and to admit positive eigenvalues. Lattices with hexagonal, rectangular, tetrahedral and cubic unit cells are analyzed. The semi-analytical method can be asymptotically expanded for low frequency yielding explicit forms for the Christoffel matrix describing wave motion in the quasistatic limit.\",\"PeriodicalId\":92460,\"journal\":{\"name\":\"The quarterly journal of mechanics and applied mathematics\",\"volume\":\"70 2\",\"pages\":\"131-151\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2017-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The quarterly journal of mechanics and applied mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/8210306/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The quarterly journal of mechanics and applied mathematics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/8210306/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

考虑了支撑纵波和弯曲波的梁构件的二维和三维周期晶格中的波浪运动。提出了一种求解Bloch波谱的解析方法,其特征是通过强制Floquet条件得到一个广义特征值方程。动态刚度矩阵被证明是显式埃尔米特矩阵,并且允许正特征值。分析了具有六边形、矩形、四面体和立方晶胞的格。半解析方法可以渐近扩展到低频,得到描述拟静态极限下波动的Christoffel矩阵的显式形式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Wave Propagation and Homogenization in 2d and 3d Lattices: A Semi-Analytical Approach
Wave motion in two- and three-dimensional periodic lattices of beam members supporting longitudinal and flexural waves is considered. An analytic method for solving the Bloch wave spectrum is developed, characterized by a generalized eigenvalue equation obtained by enforcing the Floquet condition. The dynamic stiffness matrix is shown to be explicitly Hermitian and to admit positive eigenvalues. Lattices with hexagonal, rectangular, tetrahedral and cubic unit cells are analyzed. The semi-analytical method can be asymptotically expanded for low frequency yielding explicit forms for the Christoffel matrix describing wave motion in the quasistatic limit.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信