交替群图与分裂星的可靠性分析

IF 1.5 4区 计算机科学 Q4 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Mei-Mei Gu;Rong-Xia Hao;Jou-Ming Chang
{"title":"交替群图与分裂星的可靠性分析","authors":"Mei-Mei Gu;Rong-Xia Hao;Jou-Ming Chang","doi":"10.1093/comjnl/bxaa070","DOIUrl":null,"url":null,"abstract":"Given a connected graph \n<tex>$G$</tex>\n and a positive integer \n<tex>$\\ell $</tex>\n, the \n<tex>$\\ell $</tex>\n-extra (resp. \n<tex>$\\ell $</tex>\n-component) edge connectivity of \n<tex>$G$</tex>\n, denoted by \n<tex>$\\lambda ^{(\\ell )}(G)$</tex>\n (resp. \n<tex>$\\lambda _{\\ell }(G)$</tex>\n), is the minimum number of edges whose removal from \n<tex>$G$</tex>\n results in a disconnected graph so that every component has more than \n<tex>$\\ell $</tex>\n vertices (resp. so that it contains at least \n<tex>$\\ell $</tex>\n components). This naturally generalizes the classical edge connectivity of graphs defined in term of the minimum edge cut. In this paper, we proposed a general approach to derive component (resp. extra) edge connectivity for a connected graph \n<tex>$G$</tex>\n. For a connected graph \n<tex>$G$</tex>\n, let \n<tex>$S$</tex>\n be a vertex subset of \n<tex>$G$</tex>\n for \n<tex>$G\\in \\{\\Gamma _{n}(\\Delta ),AG_n,S_n^2\\}$</tex>\n such that \n<tex>$|S|=s\\leq |V(G)|/2$</tex>\n, \n<tex>$G[S]$</tex>\n is connected and \n<tex>$|E(S,G-S)|=\\min \\limits _{U\\subseteq V(G)}\\{|E(U, G-U)|: |U|=s, G[U]\\ \\textrm{is connected}\\ \\}$</tex>\n, then we prove that \n<tex>$\\lambda ^{(s-1)}(G)=|E(S,G-S)|$</tex>\n and \n<tex>$\\lambda _{s+1}(G)=|E(S,G-S)|+|E(G[S])|$</tex>\n for \n<tex>$s=3,4,5$</tex>\n. By exploring the reliability analysis of \n<tex>$AG_n$</tex>\n and \n<tex>$S_n^2$</tex>\n based on extra (component) edge faults, we obtain the following results: (i) \n<tex>$\\lambda _3(AG_n)-1=\\lambda ^{(1)}(AG_n)=4n-10$</tex>\n, \n<tex>$\\lambda _4(AG_n)-3=\\lambda ^{(2)}(AG_n)=6n-18$</tex>\n and \n<tex>$\\lambda _5(AG_n)-4=\\lambda ^{(3)}(AG_n)=8n-24$</tex>\n; (ii) \n<tex>$\\lambda _3(S_n^2)-1=\\lambda ^{(1)}(S_n^2)=4n-8$</tex>\n, \n<tex>$\\lambda _4(S_n^2)-3=\\lambda ^{(2)}(S_n^2)=6n-15$</tex>\n and \n<tex>$\\lambda _5(S_n^2)-4=\\lambda ^{(3)}(S_n^2)=8n-20$</tex>\n. This general approach maybe applied to many diverse networks.","PeriodicalId":50641,"journal":{"name":"Computer Journal","volume":"64 9","pages":"1425-1436"},"PeriodicalIF":1.5000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/comjnl/bxaa070","citationCount":"4","resultStr":"{\"title\":\"Reliability Analysis of Alternating Group Graphs and Split-Stars\",\"authors\":\"Mei-Mei Gu;Rong-Xia Hao;Jou-Ming Chang\",\"doi\":\"10.1093/comjnl/bxaa070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a connected graph \\n<tex>$G$</tex>\\n and a positive integer \\n<tex>$\\\\ell $</tex>\\n, the \\n<tex>$\\\\ell $</tex>\\n-extra (resp. \\n<tex>$\\\\ell $</tex>\\n-component) edge connectivity of \\n<tex>$G$</tex>\\n, denoted by \\n<tex>$\\\\lambda ^{(\\\\ell )}(G)$</tex>\\n (resp. \\n<tex>$\\\\lambda _{\\\\ell }(G)$</tex>\\n), is the minimum number of edges whose removal from \\n<tex>$G$</tex>\\n results in a disconnected graph so that every component has more than \\n<tex>$\\\\ell $</tex>\\n vertices (resp. so that it contains at least \\n<tex>$\\\\ell $</tex>\\n components). This naturally generalizes the classical edge connectivity of graphs defined in term of the minimum edge cut. In this paper, we proposed a general approach to derive component (resp. extra) edge connectivity for a connected graph \\n<tex>$G$</tex>\\n. For a connected graph \\n<tex>$G$</tex>\\n, let \\n<tex>$S$</tex>\\n be a vertex subset of \\n<tex>$G$</tex>\\n for \\n<tex>$G\\\\in \\\\{\\\\Gamma _{n}(\\\\Delta ),AG_n,S_n^2\\\\}$</tex>\\n such that \\n<tex>$|S|=s\\\\leq |V(G)|/2$</tex>\\n, \\n<tex>$G[S]$</tex>\\n is connected and \\n<tex>$|E(S,G-S)|=\\\\min \\\\limits _{U\\\\subseteq V(G)}\\\\{|E(U, G-U)|: |U|=s, G[U]\\\\ \\\\textrm{is connected}\\\\ \\\\}$</tex>\\n, then we prove that \\n<tex>$\\\\lambda ^{(s-1)}(G)=|E(S,G-S)|$</tex>\\n and \\n<tex>$\\\\lambda _{s+1}(G)=|E(S,G-S)|+|E(G[S])|$</tex>\\n for \\n<tex>$s=3,4,5$</tex>\\n. By exploring the reliability analysis of \\n<tex>$AG_n$</tex>\\n and \\n<tex>$S_n^2$</tex>\\n based on extra (component) edge faults, we obtain the following results: (i) \\n<tex>$\\\\lambda _3(AG_n)-1=\\\\lambda ^{(1)}(AG_n)=4n-10$</tex>\\n, \\n<tex>$\\\\lambda _4(AG_n)-3=\\\\lambda ^{(2)}(AG_n)=6n-18$</tex>\\n and \\n<tex>$\\\\lambda _5(AG_n)-4=\\\\lambda ^{(3)}(AG_n)=8n-24$</tex>\\n; (ii) \\n<tex>$\\\\lambda _3(S_n^2)-1=\\\\lambda ^{(1)}(S_n^2)=4n-8$</tex>\\n, \\n<tex>$\\\\lambda _4(S_n^2)-3=\\\\lambda ^{(2)}(S_n^2)=6n-15$</tex>\\n and \\n<tex>$\\\\lambda _5(S_n^2)-4=\\\\lambda ^{(3)}(S_n^2)=8n-20$</tex>\\n. This general approach maybe applied to many diverse networks.\",\"PeriodicalId\":50641,\"journal\":{\"name\":\"Computer Journal\",\"volume\":\"64 9\",\"pages\":\"1425-1436\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2020-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1093/comjnl/bxaa070\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Journal\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9579112/\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Journal","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/9579112/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 4

摘要

给定一个连通图$G$和一个正整数$\ell $, $\ell $ -extra (respp。$\ell $ -组件)的边连通性$G$,表示为$\lambda ^{(\ell )}(G)$(分别为:$\lambda _{\ell }(G)$)是最小边数,从$G$中移除这些边会导致一个不连接的图,这样每个组件都有超过$\ell $个顶点(见图1)。这样它至少包含$\ell $组件)。这自然地推广了由最小边切定义的图的经典边连通性。在本文中,我们提出了一种通用的方法来推导组件。额外)边缘连接的连接图$G$。对于连通图$G$,设$S$为$G\in \{\Gamma _{n}(\Delta ),AG_n,S_n^2\}$的$G$的一个顶点子集,使得$|S|=s\leq |V(G)|/2$、$G[S]$和$|E(S,G-S)|=\min \limits _{U\subseteq V(G)}\{|E(U, G-U)|: |U|=s, G[U]\ \textrm{is connected}\ \}$连通,则证明$s=3,4,5$的$\lambda ^{(s-1)}(G)=|E(S,G-S)|$和$\lambda _{s+1}(G)=|E(S,G-S)|+|E(G[S])|$。通过探索基于额外(组件)边缘故障的$AG_n$和$S_n^2$的可靠性分析,我们得到以下结果:(i) $\lambda _3(AG_n)-1=\lambda ^{(1)}(AG_n)=4n-10$、$\lambda _4(AG_n)-3=\lambda ^{(2)}(AG_n)=6n-18$和$\lambda _5(AG_n)-4=\lambda ^{(3)}(AG_n)=8n-24$;(ii) $\lambda _3(S_n^2)-1=\lambda ^{(1)}(S_n^2)=4n-8$、$\lambda _4(S_n^2)-3=\lambda ^{(2)}(S_n^2)=6n-15$和$\lambda _5(S_n^2)-4=\lambda ^{(3)}(S_n^2)=8n-20$。这种通用的方法可能适用于许多不同的网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reliability Analysis of Alternating Group Graphs and Split-Stars
Given a connected graph $G$ and a positive integer $\ell $ , the $\ell $ -extra (resp. $\ell $ -component) edge connectivity of $G$ , denoted by $\lambda ^{(\ell )}(G)$ (resp. $\lambda _{\ell }(G)$ ), is the minimum number of edges whose removal from $G$ results in a disconnected graph so that every component has more than $\ell $ vertices (resp. so that it contains at least $\ell $ components). This naturally generalizes the classical edge connectivity of graphs defined in term of the minimum edge cut. In this paper, we proposed a general approach to derive component (resp. extra) edge connectivity for a connected graph $G$ . For a connected graph $G$ , let $S$ be a vertex subset of $G$ for $G\in \{\Gamma _{n}(\Delta ),AG_n,S_n^2\}$ such that $|S|=s\leq |V(G)|/2$ , $G[S]$ is connected and $|E(S,G-S)|=\min \limits _{U\subseteq V(G)}\{|E(U, G-U)|: |U|=s, G[U]\ \textrm{is connected}\ \}$ , then we prove that $\lambda ^{(s-1)}(G)=|E(S,G-S)|$ and $\lambda _{s+1}(G)=|E(S,G-S)|+|E(G[S])|$ for $s=3,4,5$ . By exploring the reliability analysis of $AG_n$ and $S_n^2$ based on extra (component) edge faults, we obtain the following results: (i) $\lambda _3(AG_n)-1=\lambda ^{(1)}(AG_n)=4n-10$ , $\lambda _4(AG_n)-3=\lambda ^{(2)}(AG_n)=6n-18$ and $\lambda _5(AG_n)-4=\lambda ^{(3)}(AG_n)=8n-24$ ; (ii) $\lambda _3(S_n^2)-1=\lambda ^{(1)}(S_n^2)=4n-8$ , $\lambda _4(S_n^2)-3=\lambda ^{(2)}(S_n^2)=6n-15$ and $\lambda _5(S_n^2)-4=\lambda ^{(3)}(S_n^2)=8n-20$ . This general approach maybe applied to many diverse networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computer Journal
Computer Journal 工程技术-计算机:软件工程
CiteScore
3.60
自引率
7.10%
发文量
164
审稿时长
4.8 months
期刊介绍: The Computer Journal is one of the longest-established journals serving all branches of the academic computer science community. It is currently published in four sections.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信