{"title":"图的最小状态、匹配与支配","authors":"Caixia Liang;Bo Zhou;Haiyan Guo","doi":"10.1093/comjnl/bxaa057","DOIUrl":null,"url":null,"abstract":"Given a graph, the status of a vertex is the sum of the distances between the vertex and all other vertices. The minimum status of a graph is the minimum of statuses of all vertices of this graph. We give a sharp upper bound for the minimum status of a connected graph with fixed order and matching number (domination number, respectively) and characterize the unique trees achieving the bound. We also determine the unique tree such that its minimum status is as small as possible when order and matching number (domination number, respectively) are fixed.","PeriodicalId":50641,"journal":{"name":"Computer Journal","volume":"64 9","pages":"1384-1392"},"PeriodicalIF":1.5000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/comjnl/bxaa057","citationCount":"7","resultStr":"{\"title\":\"Minimum Status, Matching and Domination of Graphs\",\"authors\":\"Caixia Liang;Bo Zhou;Haiyan Guo\",\"doi\":\"10.1093/comjnl/bxaa057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a graph, the status of a vertex is the sum of the distances between the vertex and all other vertices. The minimum status of a graph is the minimum of statuses of all vertices of this graph. We give a sharp upper bound for the minimum status of a connected graph with fixed order and matching number (domination number, respectively) and characterize the unique trees achieving the bound. We also determine the unique tree such that its minimum status is as small as possible when order and matching number (domination number, respectively) are fixed.\",\"PeriodicalId\":50641,\"journal\":{\"name\":\"Computer Journal\",\"volume\":\"64 9\",\"pages\":\"1384-1392\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2020-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1093/comjnl/bxaa057\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Journal\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9579108/\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Journal","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/9579108/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Given a graph, the status of a vertex is the sum of the distances between the vertex and all other vertices. The minimum status of a graph is the minimum of statuses of all vertices of this graph. We give a sharp upper bound for the minimum status of a connected graph with fixed order and matching number (domination number, respectively) and characterize the unique trees achieving the bound. We also determine the unique tree such that its minimum status is as small as possible when order and matching number (domination number, respectively) are fixed.
期刊介绍:
The Computer Journal is one of the longest-established journals serving all branches of the academic computer science community. It is currently published in four sections.