广义超多边形的模空间

IF 0.6 4区 数学 Q3 MATHEMATICS
Steven Rayan;Laura P Schaposnik
{"title":"广义超多边形的模空间","authors":"Steven Rayan;Laura P Schaposnik","doi":"10.1093/qmath/haaa036","DOIUrl":null,"url":null,"abstract":"We introduce the notion of generalized hyperpolygon, which arises as a representation, in the sense of Nakajima, of a comet-shaped quiver. We identify these representations with rigid geometric figures, namely pairs of polygons: one in the Lie algebra of a compact group and the other in its complexification. To such data, we associate an explicit meromorphic Higgs bundle on a genus-g Riemann surface, where g is the number of loops in the comet, thereby embedding the Nakajima quiver variety into a Hitchin system on a punctured genus-g Riemann surface (generally with positive codimension). We show that, under certain assumptions on flag types, the space of generalized hyperpolygons admits the structure of a completely integrable Hamiltonian system of Gelfand–Tsetlin type, inherited from the reduction of partial flag varieties. In the case where all flags are complete, we present the Hamiltonians explicitly. We also remark upon the discretization of the Hitchin equations given by hyperpolygons, the construction of triple branes (in the sense of Kapustin–Witten mirror symmetry), and dualities between tame and wild Hitchin systems (in the sense of Painlevé transcendents).","PeriodicalId":54522,"journal":{"name":"Quarterly Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Moduli Spaces of Generalized Hyperpolygons\",\"authors\":\"Steven Rayan;Laura P Schaposnik\",\"doi\":\"10.1093/qmath/haaa036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce the notion of generalized hyperpolygon, which arises as a representation, in the sense of Nakajima, of a comet-shaped quiver. We identify these representations with rigid geometric figures, namely pairs of polygons: one in the Lie algebra of a compact group and the other in its complexification. To such data, we associate an explicit meromorphic Higgs bundle on a genus-g Riemann surface, where g is the number of loops in the comet, thereby embedding the Nakajima quiver variety into a Hitchin system on a punctured genus-g Riemann surface (generally with positive codimension). We show that, under certain assumptions on flag types, the space of generalized hyperpolygons admits the structure of a completely integrable Hamiltonian system of Gelfand–Tsetlin type, inherited from the reduction of partial flag varieties. In the case where all flags are complete, we present the Hamiltonians explicitly. We also remark upon the discretization of the Hitchin equations given by hyperpolygons, the construction of triple branes (in the sense of Kapustin–Witten mirror symmetry), and dualities between tame and wild Hitchin systems (in the sense of Painlevé transcendents).\",\"PeriodicalId\":54522,\"journal\":{\"name\":\"Quarterly Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quarterly Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9519168/\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://ieeexplore.ieee.org/document/9519168/","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 7

摘要

我们引入了广义超多边形的概念,在中岛的意义上,它是彗星形状箭袋的代表。我们用刚性几何图形来识别这些表示,即多边形对:一个在紧群的李代数中,另一个在其复数中。对于这些数据,我们将genus-g黎曼表面上的显式亚纯希格斯束联系起来,其中g是彗星中的环数,从而将Nakajima箭袋变体嵌入到穿孔的genus-g-黎曼表面(通常具有正余维)上的希钦系统中。我们证明,在对标志类型的某些假设下,广义超多边形空间允许Gelfand–Tsetlin型完全可积哈密顿系统的结构,该系统继承自部分标志变体的约简。在所有标志都是完整的情况下,我们显式地给出了哈密顿量。我们还注意到超多边形给出的希钦方程的离散化,三膜的构造(在Kapustin–Witten镜像对称的意义上),以及驯服和狂野希钦系统之间的对偶性(在Painlevé超验的意义下)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Moduli Spaces of Generalized Hyperpolygons
We introduce the notion of generalized hyperpolygon, which arises as a representation, in the sense of Nakajima, of a comet-shaped quiver. We identify these representations with rigid geometric figures, namely pairs of polygons: one in the Lie algebra of a compact group and the other in its complexification. To such data, we associate an explicit meromorphic Higgs bundle on a genus-g Riemann surface, where g is the number of loops in the comet, thereby embedding the Nakajima quiver variety into a Hitchin system on a punctured genus-g Riemann surface (generally with positive codimension). We show that, under certain assumptions on flag types, the space of generalized hyperpolygons admits the structure of a completely integrable Hamiltonian system of Gelfand–Tsetlin type, inherited from the reduction of partial flag varieties. In the case where all flags are complete, we present the Hamiltonians explicitly. We also remark upon the discretization of the Hitchin equations given by hyperpolygons, the construction of triple branes (in the sense of Kapustin–Witten mirror symmetry), and dualities between tame and wild Hitchin systems (in the sense of Painlevé transcendents).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
36
审稿时长
6-12 weeks
期刊介绍: The Quarterly Journal of Mathematics publishes original contributions to pure mathematics. All major areas of pure mathematics are represented on the editorial board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信