{"title":"西格尔伽玛环和通用算术","authors":"Alain CONNES;Caterina CONSANI","doi":"10.1093/qmath/haaa042","DOIUrl":null,"url":null,"abstract":"Segal’s Γ-rings provide a natural framework for absolute algebraic geometry. We use G. Almkvist’s global Witt construction to explore the relation with J. Borger \n<tex>${\\mathbb F}_1$</tex>\n-geometry and compute the Witt functor-ring \n<tex>${\\mathbb W}_0({\\mathbb S})$</tex>\n of the simplest Γ-ring \n<tex>${\\mathbb S}$</tex>\n. We prove that it is isomorphic to the Galois invariant part of the BC-system, and exhibit the close relation between λ-rings and the Arithmetic Site. Then, we concentrate on the Arakelov compactification \n<tex>${\\overline{{\\rm Spec\\,}{\\mathbb Z}}}$</tex>\n which acquires a structure sheaf of \n<tex>${\\mathbb S}$</tex>\n-algebras. After supplying a probabilistic interpretation of the classical theta invariant of a divisor D on \n<tex>${\\overline{{\\rm Spec\\,}{\\mathbb Z}}}$</tex>\n, we show how to associate to D a Γ-space that encodes, in homotopical terms, the Riemann–Roch problem for D.","PeriodicalId":54522,"journal":{"name":"Quarterly Journal of Mathematics","volume":"72 1-2","pages":"1-29"},"PeriodicalIF":0.6000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Segal’s Gamma rings and universal arithmetic\",\"authors\":\"Alain CONNES;Caterina CONSANI\",\"doi\":\"10.1093/qmath/haaa042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Segal’s Γ-rings provide a natural framework for absolute algebraic geometry. We use G. Almkvist’s global Witt construction to explore the relation with J. Borger \\n<tex>${\\\\mathbb F}_1$</tex>\\n-geometry and compute the Witt functor-ring \\n<tex>${\\\\mathbb W}_0({\\\\mathbb S})$</tex>\\n of the simplest Γ-ring \\n<tex>${\\\\mathbb S}$</tex>\\n. We prove that it is isomorphic to the Galois invariant part of the BC-system, and exhibit the close relation between λ-rings and the Arithmetic Site. Then, we concentrate on the Arakelov compactification \\n<tex>${\\\\overline{{\\\\rm Spec\\\\,}{\\\\mathbb Z}}}$</tex>\\n which acquires a structure sheaf of \\n<tex>${\\\\mathbb S}$</tex>\\n-algebras. After supplying a probabilistic interpretation of the classical theta invariant of a divisor D on \\n<tex>${\\\\overline{{\\\\rm Spec\\\\,}{\\\\mathbb Z}}}$</tex>\\n, we show how to associate to D a Γ-space that encodes, in homotopical terms, the Riemann–Roch problem for D.\",\"PeriodicalId\":54522,\"journal\":{\"name\":\"Quarterly Journal of Mathematics\",\"volume\":\"72 1-2\",\"pages\":\"1-29\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quarterly Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9519143/\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://ieeexplore.ieee.org/document/9519143/","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Segal’s Γ-rings provide a natural framework for absolute algebraic geometry. We use G. Almkvist’s global Witt construction to explore the relation with J. Borger
${\mathbb F}_1$
-geometry and compute the Witt functor-ring
${\mathbb W}_0({\mathbb S})$
of the simplest Γ-ring
${\mathbb S}$
. We prove that it is isomorphic to the Galois invariant part of the BC-system, and exhibit the close relation between λ-rings and the Arithmetic Site. Then, we concentrate on the Arakelov compactification
${\overline{{\rm Spec\,}{\mathbb Z}}}$
which acquires a structure sheaf of
${\mathbb S}$
-algebras. After supplying a probabilistic interpretation of the classical theta invariant of a divisor D on
${\overline{{\rm Spec\,}{\mathbb Z}}}$
, we show how to associate to D a Γ-space that encodes, in homotopical terms, the Riemann–Roch problem for D.
期刊介绍:
The Quarterly Journal of Mathematics publishes original contributions to pure mathematics. All major areas of pure mathematics are represented on the editorial board.