西格尔伽玛环和通用算术

IF 0.6 4区 数学 Q3 MATHEMATICS
Alain CONNES;Caterina CONSANI
{"title":"西格尔伽玛环和通用算术","authors":"Alain CONNES;Caterina CONSANI","doi":"10.1093/qmath/haaa042","DOIUrl":null,"url":null,"abstract":"Segal’s Γ-rings provide a natural framework for absolute algebraic geometry. We use G. Almkvist’s global Witt construction to explore the relation with J. Borger \n<tex>${\\mathbb F}_1$</tex>\n-geometry and compute the Witt functor-ring \n<tex>${\\mathbb W}_0({\\mathbb S})$</tex>\n of the simplest Γ-ring \n<tex>${\\mathbb S}$</tex>\n. We prove that it is isomorphic to the Galois invariant part of the BC-system, and exhibit the close relation between λ-rings and the Arithmetic Site. Then, we concentrate on the Arakelov compactification \n<tex>${\\overline{{\\rm Spec\\,}{\\mathbb Z}}}$</tex>\n which acquires a structure sheaf of \n<tex>${\\mathbb S}$</tex>\n-algebras. After supplying a probabilistic interpretation of the classical theta invariant of a divisor D on \n<tex>${\\overline{{\\rm Spec\\,}{\\mathbb Z}}}$</tex>\n, we show how to associate to D a Γ-space that encodes, in homotopical terms, the Riemann–Roch problem for D.","PeriodicalId":54522,"journal":{"name":"Quarterly Journal of Mathematics","volume":"72 1-2","pages":"1-29"},"PeriodicalIF":0.6000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Segal’s Gamma rings and universal arithmetic\",\"authors\":\"Alain CONNES;Caterina CONSANI\",\"doi\":\"10.1093/qmath/haaa042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Segal’s Γ-rings provide a natural framework for absolute algebraic geometry. We use G. Almkvist’s global Witt construction to explore the relation with J. Borger \\n<tex>${\\\\mathbb F}_1$</tex>\\n-geometry and compute the Witt functor-ring \\n<tex>${\\\\mathbb W}_0({\\\\mathbb S})$</tex>\\n of the simplest Γ-ring \\n<tex>${\\\\mathbb S}$</tex>\\n. We prove that it is isomorphic to the Galois invariant part of the BC-system, and exhibit the close relation between λ-rings and the Arithmetic Site. Then, we concentrate on the Arakelov compactification \\n<tex>${\\\\overline{{\\\\rm Spec\\\\,}{\\\\mathbb Z}}}$</tex>\\n which acquires a structure sheaf of \\n<tex>${\\\\mathbb S}$</tex>\\n-algebras. After supplying a probabilistic interpretation of the classical theta invariant of a divisor D on \\n<tex>${\\\\overline{{\\\\rm Spec\\\\,}{\\\\mathbb Z}}}$</tex>\\n, we show how to associate to D a Γ-space that encodes, in homotopical terms, the Riemann–Roch problem for D.\",\"PeriodicalId\":54522,\"journal\":{\"name\":\"Quarterly Journal of Mathematics\",\"volume\":\"72 1-2\",\"pages\":\"1-29\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quarterly Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9519143/\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://ieeexplore.ieee.org/document/9519143/","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 8

摘要

Γ-环为绝对代数几何提供了一个自然的框架。我们使用G.Almkvist的全局Witt构造来探索与J.Borger${\mathbb F}_1$几何的关系,并计算最简单Γ-环${\ mathbb s}$的Witt函子环${\mathbb W}_0({\math bb s})$。我们证明了它同构于BC系统的Galois不变部分,并展示了λ-环与算术位置之间的密切关系。然后,我们集中讨论Arakelov紧化${\overline{{\rm-Spec\,}{\mathbb Z}}}$,它获得了${\mathbb S}$-代数的结构簇。在对${\overline{\rm-Spec\,}{\mathbb Z}}}$上除数D的经典θ不变量进行概率解释后,我们展示了如何将Γ-空间与D相关联,该Γ-空以同位项编码D的Riemann-Roch问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Segal’s Gamma rings and universal arithmetic
Segal’s Γ-rings provide a natural framework for absolute algebraic geometry. We use G. Almkvist’s global Witt construction to explore the relation with J. Borger ${\mathbb F}_1$ -geometry and compute the Witt functor-ring ${\mathbb W}_0({\mathbb S})$ of the simplest Γ-ring ${\mathbb S}$ . We prove that it is isomorphic to the Galois invariant part of the BC-system, and exhibit the close relation between λ-rings and the Arithmetic Site. Then, we concentrate on the Arakelov compactification ${\overline{{\rm Spec\,}{\mathbb Z}}}$ which acquires a structure sheaf of ${\mathbb S}$ -algebras. After supplying a probabilistic interpretation of the classical theta invariant of a divisor D on ${\overline{{\rm Spec\,}{\mathbb Z}}}$ , we show how to associate to D a Γ-space that encodes, in homotopical terms, the Riemann–Roch problem for D.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
36
审稿时长
6-12 weeks
期刊介绍: The Quarterly Journal of Mathematics publishes original contributions to pure mathematics. All major areas of pure mathematics are represented on the editorial board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信