{"title":"作为Bott周期性推论的Toeplitz算子的指标定理","authors":"Paul F Baum;Erik Van Erp","doi":"10.1093/qmath/haab008","DOIUrl":null,"url":null,"abstract":"This is an expository paper about the index of Toeplitz operators, and in particular Boutet de Monvel’s theorem [5]. We prove Boutet de Monvel’s theorem as a corollary of Bott periodicity, and independently of the Atiyah-Singer index theorem.","PeriodicalId":54522,"journal":{"name":"Quarterly Journal of Mathematics","volume":"72 1-2","pages":"547-569"},"PeriodicalIF":0.6000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Index Theorem for Toeplitz Operators as a Corollary of Bott Periodicity\",\"authors\":\"Paul F Baum;Erik Van Erp\",\"doi\":\"10.1093/qmath/haab008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This is an expository paper about the index of Toeplitz operators, and in particular Boutet de Monvel’s theorem [5]. We prove Boutet de Monvel’s theorem as a corollary of Bott periodicity, and independently of the Atiyah-Singer index theorem.\",\"PeriodicalId\":54522,\"journal\":{\"name\":\"Quarterly Journal of Mathematics\",\"volume\":\"72 1-2\",\"pages\":\"547-569\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quarterly Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9519180/\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://ieeexplore.ieee.org/document/9519180/","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1
摘要
这是一篇关于Toeplitz算子的指数,特别是关于Boutet de Monvel定理[5]的说明性论文。我们独立于Atiyah-Singer指数定理,证明了Boutet de Monvel定理是Bott周期性的一个推论。
The Index Theorem for Toeplitz Operators as a Corollary of Bott Periodicity
This is an expository paper about the index of Toeplitz operators, and in particular Boutet de Monvel’s theorem [5]. We prove Boutet de Monvel’s theorem as a corollary of Bott periodicity, and independently of the Atiyah-Singer index theorem.
期刊介绍:
The Quarterly Journal of Mathematics publishes original contributions to pure mathematics. All major areas of pure mathematics are represented on the editorial board.