作为Bott周期性推论的Toeplitz算子的指标定理

IF 0.6 4区 数学 Q3 MATHEMATICS
Paul F Baum;Erik Van Erp
{"title":"作为Bott周期性推论的Toeplitz算子的指标定理","authors":"Paul F Baum;Erik Van Erp","doi":"10.1093/qmath/haab008","DOIUrl":null,"url":null,"abstract":"This is an expository paper about the index of Toeplitz operators, and in particular Boutet de Monvel’s theorem [5]. We prove Boutet de Monvel’s theorem as a corollary of Bott periodicity, and independently of the Atiyah-Singer index theorem.","PeriodicalId":54522,"journal":{"name":"Quarterly Journal of Mathematics","volume":"72 1-2","pages":"547-569"},"PeriodicalIF":0.6000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Index Theorem for Toeplitz Operators as a Corollary of Bott Periodicity\",\"authors\":\"Paul F Baum;Erik Van Erp\",\"doi\":\"10.1093/qmath/haab008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This is an expository paper about the index of Toeplitz operators, and in particular Boutet de Monvel’s theorem [5]. We prove Boutet de Monvel’s theorem as a corollary of Bott periodicity, and independently of the Atiyah-Singer index theorem.\",\"PeriodicalId\":54522,\"journal\":{\"name\":\"Quarterly Journal of Mathematics\",\"volume\":\"72 1-2\",\"pages\":\"547-569\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quarterly Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9519180/\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://ieeexplore.ieee.org/document/9519180/","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

这是一篇关于Toeplitz算子的指数,特别是关于Boutet de Monvel定理[5]的说明性论文。我们独立于Atiyah-Singer指数定理,证明了Boutet de Monvel定理是Bott周期性的一个推论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Index Theorem for Toeplitz Operators as a Corollary of Bott Periodicity
This is an expository paper about the index of Toeplitz operators, and in particular Boutet de Monvel’s theorem [5]. We prove Boutet de Monvel’s theorem as a corollary of Bott periodicity, and independently of the Atiyah-Singer index theorem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
36
审稿时长
6-12 weeks
期刊介绍: The Quarterly Journal of Mathematics publishes original contributions to pure mathematics. All major areas of pure mathematics are represented on the editorial board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信