{"title":"作为Atiyah-Hitchin和Taub-NUT几何叠加的Dk引力瞬子","authors":"B J Schroers;M A Singer","doi":"10.1093/qmath/haab002","DOIUrl":null,"url":null,"abstract":"We obtain D\n<inf>k</inf>\n ALF gravitational instantons by a gluing construction which captures, in a precise and explicit fashion, their interpretation as nonlinear superpositions of the moduli space of centred SU(2) monopoles, equipped with the Atiyah–Hitchin metric, and k copies of the Taub–NUT manifold. The construction proceeds from a finite set of points in euclidean space, reflection symmetric about the origin, and depends on an adiabatic parameter which is incorporated into the geometry as a fifth dimension. Using a formulation in terms of hyperKähler triples on manifolds with boundaries, we show that the constituent Atiyah–Hitchin and Taub–NUT geometries arise as boundary components of the five-dimensional geometry as the adiabatic parameter is taken to zero.","PeriodicalId":54522,"journal":{"name":"Quarterly Journal of Mathematics","volume":"72 1-2","pages":"277-337"},"PeriodicalIF":0.6000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/qmath/haab002","citationCount":"4","resultStr":"{\"title\":\"Dk Gravitational Instantons as Superpositions of Atiyah–Hitchin and Taub–NUT Geometries\",\"authors\":\"B J Schroers;M A Singer\",\"doi\":\"10.1093/qmath/haab002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We obtain D\\n<inf>k</inf>\\n ALF gravitational instantons by a gluing construction which captures, in a precise and explicit fashion, their interpretation as nonlinear superpositions of the moduli space of centred SU(2) monopoles, equipped with the Atiyah–Hitchin metric, and k copies of the Taub–NUT manifold. The construction proceeds from a finite set of points in euclidean space, reflection symmetric about the origin, and depends on an adiabatic parameter which is incorporated into the geometry as a fifth dimension. Using a formulation in terms of hyperKähler triples on manifolds with boundaries, we show that the constituent Atiyah–Hitchin and Taub–NUT geometries arise as boundary components of the five-dimensional geometry as the adiabatic parameter is taken to zero.\",\"PeriodicalId\":54522,\"journal\":{\"name\":\"Quarterly Journal of Mathematics\",\"volume\":\"72 1-2\",\"pages\":\"277-337\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1093/qmath/haab002\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quarterly Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9519173/\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://ieeexplore.ieee.org/document/9519173/","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Dk Gravitational Instantons as Superpositions of Atiyah–Hitchin and Taub–NUT Geometries
We obtain D
k
ALF gravitational instantons by a gluing construction which captures, in a precise and explicit fashion, their interpretation as nonlinear superpositions of the moduli space of centred SU(2) monopoles, equipped with the Atiyah–Hitchin metric, and k copies of the Taub–NUT manifold. The construction proceeds from a finite set of points in euclidean space, reflection symmetric about the origin, and depends on an adiabatic parameter which is incorporated into the geometry as a fifth dimension. Using a formulation in terms of hyperKähler triples on manifolds with boundaries, we show that the constituent Atiyah–Hitchin and Taub–NUT geometries arise as boundary components of the five-dimensional geometry as the adiabatic parameter is taken to zero.
期刊介绍:
The Quarterly Journal of Mathematics publishes original contributions to pure mathematics. All major areas of pure mathematics are represented on the editorial board.