Wall-Crossing在Noether-Lefschetz基因座中的应用

IF 0.6 4区 数学 Q3 MATHEMATICS
S Feyzbakhsh;R P Thomas;C Voisin
{"title":"Wall-Crossing在Noether-Lefschetz基因座中的应用","authors":"S Feyzbakhsh;R P Thomas;C Voisin","doi":"10.1093/qmathj/haaa022","DOIUrl":null,"url":null,"abstract":"Consider a smooth projective 3-fold \n<tex>$X$</tex>\n satisfying the Bogomolov–Gieseker conjecture of Bayer–Macrì–Toda (such as \n<tex>${\\mathbb{P}}^3$</tex>\n, the quintic 3-fold or an abelian 3-fold). Let \n<tex>$L$</tex>\n be a line bundle supported on a very positive surface in \n<tex>$X$</tex>\n. If \n<tex>$c_1(L)$</tex>\n is a primitive cohomology class, then we show it has very negative square.","PeriodicalId":54522,"journal":{"name":"Quarterly Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/qmathj/haaa022","citationCount":"8","resultStr":"{\"title\":\"An Application of Wall-Crossing to Noether–Lefschetz Loci\",\"authors\":\"S Feyzbakhsh;R P Thomas;C Voisin\",\"doi\":\"10.1093/qmathj/haaa022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Consider a smooth projective 3-fold \\n<tex>$X$</tex>\\n satisfying the Bogomolov–Gieseker conjecture of Bayer–Macrì–Toda (such as \\n<tex>${\\\\mathbb{P}}^3$</tex>\\n, the quintic 3-fold or an abelian 3-fold). Let \\n<tex>$L$</tex>\\n be a line bundle supported on a very positive surface in \\n<tex>$X$</tex>\\n. If \\n<tex>$c_1(L)$</tex>\\n is a primitive cohomology class, then we show it has very negative square.\",\"PeriodicalId\":54522,\"journal\":{\"name\":\"Quarterly Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1093/qmathj/haaa022\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quarterly Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9519145/\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://ieeexplore.ieee.org/document/9519145/","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 8

摘要

考虑满足Bogomolov-Gieseker猜想Bayer-Macrì-Toda的光滑投影3-fold $X$(例如${\mathbb{P}}^3$,五次3-fold或阿贝尔3-fold)。设$L$是支撑在$X$中一个非常正的曲面上的线束。如果$c_1(L)$是一个原始上同类,那么我们证明它有一个非常负的平方。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Application of Wall-Crossing to Noether–Lefschetz Loci
Consider a smooth projective 3-fold $X$ satisfying the Bogomolov–Gieseker conjecture of Bayer–Macrì–Toda (such as ${\mathbb{P}}^3$ , the quintic 3-fold or an abelian 3-fold). Let $L$ be a line bundle supported on a very positive surface in $X$ . If $c_1(L)$ is a primitive cohomology class, then we show it has very negative square.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
36
审稿时长
6-12 weeks
期刊介绍: The Quarterly Journal of Mathematics publishes original contributions to pure mathematics. All major areas of pure mathematics are represented on the editorial board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信