{"title":"Wall-Crossing在Noether-Lefschetz基因座中的应用","authors":"S Feyzbakhsh;R P Thomas;C Voisin","doi":"10.1093/qmathj/haaa022","DOIUrl":null,"url":null,"abstract":"Consider a smooth projective 3-fold \n<tex>$X$</tex>\n satisfying the Bogomolov–Gieseker conjecture of Bayer–Macrì–Toda (such as \n<tex>${\\mathbb{P}}^3$</tex>\n, the quintic 3-fold or an abelian 3-fold). Let \n<tex>$L$</tex>\n be a line bundle supported on a very positive surface in \n<tex>$X$</tex>\n. If \n<tex>$c_1(L)$</tex>\n is a primitive cohomology class, then we show it has very negative square.","PeriodicalId":54522,"journal":{"name":"Quarterly Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/qmathj/haaa022","citationCount":"8","resultStr":"{\"title\":\"An Application of Wall-Crossing to Noether–Lefschetz Loci\",\"authors\":\"S Feyzbakhsh;R P Thomas;C Voisin\",\"doi\":\"10.1093/qmathj/haaa022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Consider a smooth projective 3-fold \\n<tex>$X$</tex>\\n satisfying the Bogomolov–Gieseker conjecture of Bayer–Macrì–Toda (such as \\n<tex>${\\\\mathbb{P}}^3$</tex>\\n, the quintic 3-fold or an abelian 3-fold). Let \\n<tex>$L$</tex>\\n be a line bundle supported on a very positive surface in \\n<tex>$X$</tex>\\n. If \\n<tex>$c_1(L)$</tex>\\n is a primitive cohomology class, then we show it has very negative square.\",\"PeriodicalId\":54522,\"journal\":{\"name\":\"Quarterly Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1093/qmathj/haaa022\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quarterly Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9519145/\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://ieeexplore.ieee.org/document/9519145/","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
An Application of Wall-Crossing to Noether–Lefschetz Loci
Consider a smooth projective 3-fold
$X$
satisfying the Bogomolov–Gieseker conjecture of Bayer–Macrì–Toda (such as
${\mathbb{P}}^3$
, the quintic 3-fold or an abelian 3-fold). Let
$L$
be a line bundle supported on a very positive surface in
$X$
. If
$c_1(L)$
is a primitive cohomology class, then we show it has very negative square.
期刊介绍:
The Quarterly Journal of Mathematics publishes original contributions to pure mathematics. All major areas of pure mathematics are represented on the editorial board.