粘弹性板的动态接触模型

IF 0.8
Mircea Sofonea;Krzysztof Bartosz
{"title":"粘弹性板的动态接触模型","authors":"Mircea Sofonea;Krzysztof Bartosz","doi":"10.1093/qjmam/hbw013","DOIUrl":null,"url":null,"abstract":"We introduce a mathematical model that describes the evolution of a viscoelastic plate in frictionless contact with a deformable foundation. The process is dynamic, the contact is with normal compliance and is modelled with a subdifferentiable boundary condition. We derive a variational formulation of the problem which has the form of a second-order evolutionary hemivariational inequality for the displacement field. Then, we establish the existence of a weak solution to the model.","PeriodicalId":92460,"journal":{"name":"The quarterly journal of mechanics and applied mathematics","volume":"70 1","pages":"1-19"},"PeriodicalIF":0.8000,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/qjmam/hbw013","citationCount":"4","resultStr":"{\"title\":\"A dynamic contact model for viscoelastic plates\",\"authors\":\"Mircea Sofonea;Krzysztof Bartosz\",\"doi\":\"10.1093/qjmam/hbw013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a mathematical model that describes the evolution of a viscoelastic plate in frictionless contact with a deformable foundation. The process is dynamic, the contact is with normal compliance and is modelled with a subdifferentiable boundary condition. We derive a variational formulation of the problem which has the form of a second-order evolutionary hemivariational inequality for the displacement field. Then, we establish the existence of a weak solution to the model.\",\"PeriodicalId\":92460,\"journal\":{\"name\":\"The quarterly journal of mechanics and applied mathematics\",\"volume\":\"70 1\",\"pages\":\"1-19\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2017-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1093/qjmam/hbw013\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The quarterly journal of mechanics and applied mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/8152993/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The quarterly journal of mechanics and applied mathematics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/8152993/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

我们引入了一个数学模型来描述粘弹性板在与可变形地基无摩擦接触时的演化过程。该过程是动态的,接触具有正常柔度,并采用次可微边界条件进行建模。我们导出了该问题的变分形式,它具有二阶演化半变不等式的形式。然后,我们建立了模型弱解的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A dynamic contact model for viscoelastic plates
We introduce a mathematical model that describes the evolution of a viscoelastic plate in frictionless contact with a deformable foundation. The process is dynamic, the contact is with normal compliance and is modelled with a subdifferentiable boundary condition. We derive a variational formulation of the problem which has the form of a second-order evolutionary hemivariational inequality for the displacement field. Then, we establish the existence of a weak solution to the model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信