{"title":"基于粒子骑士互信息和树突状松鼠搜索的人工免疫分类器脑肿瘤分类","authors":"Rahul Ramesh Chakre;Dipak V Patil","doi":"10.1093/comjnl/bxab194","DOIUrl":null,"url":null,"abstract":"Magnetic Resonance Images (MRI) is an imperative imaging modality employed in the medical diagnosis tool for detecting brain tumors. However, the major obstacle in MR images classification is the semantic gap between low-level visual information obtained by MRI machines and high-level information alleged by the clinician. Hence, this research article introduces a novel technique, namely Dendritic-Squirrel Search Algorithm-based Artificial immune classifier (Dendritic-SSA-AIC) using MRI for brain tumor classification. Initially the pre-processing is performed followed by segmentation is devised using sparse fuzzy-c-means (Sparse FCM) is employed for segmentation to extract statistical and texture features. Furthermore, the Particle Rider mutual information (PRMI) is employed for feature selection, which is devised by integrating Particle swarm optimization, Rider optimization algorithm and mutual information. AIC is employed to classify the brain tumor, in which the Dendritic-SSA algorithm designed by combining dendritic cell algorithm and Squirrel search algorithm (SSA). The proposed PRMI-Dendritic-SSA-AIC provides superior performance with maximal accuracy of 97.789%, sensitivity of 97.577% and specificity of 98%.","PeriodicalId":50641,"journal":{"name":"Computer Journal","volume":"66 3","pages":"743-762"},"PeriodicalIF":1.5000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Particle Rider Mutual Information and Dendritic-Squirrel Search Algorithm With Artificial Immune Classifier for Brain Tumor Classification\",\"authors\":\"Rahul Ramesh Chakre;Dipak V Patil\",\"doi\":\"10.1093/comjnl/bxab194\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Magnetic Resonance Images (MRI) is an imperative imaging modality employed in the medical diagnosis tool for detecting brain tumors. However, the major obstacle in MR images classification is the semantic gap between low-level visual information obtained by MRI machines and high-level information alleged by the clinician. Hence, this research article introduces a novel technique, namely Dendritic-Squirrel Search Algorithm-based Artificial immune classifier (Dendritic-SSA-AIC) using MRI for brain tumor classification. Initially the pre-processing is performed followed by segmentation is devised using sparse fuzzy-c-means (Sparse FCM) is employed for segmentation to extract statistical and texture features. Furthermore, the Particle Rider mutual information (PRMI) is employed for feature selection, which is devised by integrating Particle swarm optimization, Rider optimization algorithm and mutual information. AIC is employed to classify the brain tumor, in which the Dendritic-SSA algorithm designed by combining dendritic cell algorithm and Squirrel search algorithm (SSA). The proposed PRMI-Dendritic-SSA-AIC provides superior performance with maximal accuracy of 97.789%, sensitivity of 97.577% and specificity of 98%.\",\"PeriodicalId\":50641,\"journal\":{\"name\":\"Computer Journal\",\"volume\":\"66 3\",\"pages\":\"743-762\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Journal\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10084431/\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Journal","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10084431/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Particle Rider Mutual Information and Dendritic-Squirrel Search Algorithm With Artificial Immune Classifier for Brain Tumor Classification
Magnetic Resonance Images (MRI) is an imperative imaging modality employed in the medical diagnosis tool for detecting brain tumors. However, the major obstacle in MR images classification is the semantic gap between low-level visual information obtained by MRI machines and high-level information alleged by the clinician. Hence, this research article introduces a novel technique, namely Dendritic-Squirrel Search Algorithm-based Artificial immune classifier (Dendritic-SSA-AIC) using MRI for brain tumor classification. Initially the pre-processing is performed followed by segmentation is devised using sparse fuzzy-c-means (Sparse FCM) is employed for segmentation to extract statistical and texture features. Furthermore, the Particle Rider mutual information (PRMI) is employed for feature selection, which is devised by integrating Particle swarm optimization, Rider optimization algorithm and mutual information. AIC is employed to classify the brain tumor, in which the Dendritic-SSA algorithm designed by combining dendritic cell algorithm and Squirrel search algorithm (SSA). The proposed PRMI-Dendritic-SSA-AIC provides superior performance with maximal accuracy of 97.789%, sensitivity of 97.577% and specificity of 98%.
期刊介绍:
The Computer Journal is one of the longest-established journals serving all branches of the academic computer science community. It is currently published in four sections.