基于强化学习的制造调度智能优化研究进展

Ling Wang;Zixiao Pan;Jingjing Wang
{"title":"基于强化学习的制造调度智能优化研究进展","authors":"Ling Wang;Zixiao Pan;Jingjing Wang","doi":"10.23919/CSMS.2021.0027","DOIUrl":null,"url":null,"abstract":"As the critical component of manufacturing systems, production scheduling aims to optimize objectives in terms of profit, efficiency, and energy consumption by reasonably determining the main factors including processing path, machine assignment, execute time and so on. Due to the large scale and strongly coupled constraints nature, as well as the real-time solving requirement in certain scenarios, it faces great challenges in solving the manufacturing scheduling problems. With the development of machine learning, Reinforcement Learning (RL) has made breakthroughs in a variety of decision-making problems. For manufacturing scheduling problems, in this paper we summarize the designs of state and action, tease out RL-based algorithm for scheduling, review the applications of RL for different types of scheduling problems, and then discuss the fusion modes of reinforcement learning and meta-heuristics. Finally, we analyze the existing problems in current research, and point out the future research direction and significant contents to promote the research and applications of RL-based scheduling optimization.","PeriodicalId":65786,"journal":{"name":"复杂系统建模与仿真(英文)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/9420428/9673697/09673698.pdf","citationCount":"14","resultStr":"{\"title\":\"A Review of Reinforcement Learning Based Intelligent Optimization for Manufacturing Scheduling\",\"authors\":\"Ling Wang;Zixiao Pan;Jingjing Wang\",\"doi\":\"10.23919/CSMS.2021.0027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As the critical component of manufacturing systems, production scheduling aims to optimize objectives in terms of profit, efficiency, and energy consumption by reasonably determining the main factors including processing path, machine assignment, execute time and so on. Due to the large scale and strongly coupled constraints nature, as well as the real-time solving requirement in certain scenarios, it faces great challenges in solving the manufacturing scheduling problems. With the development of machine learning, Reinforcement Learning (RL) has made breakthroughs in a variety of decision-making problems. For manufacturing scheduling problems, in this paper we summarize the designs of state and action, tease out RL-based algorithm for scheduling, review the applications of RL for different types of scheduling problems, and then discuss the fusion modes of reinforcement learning and meta-heuristics. Finally, we analyze the existing problems in current research, and point out the future research direction and significant contents to promote the research and applications of RL-based scheduling optimization.\",\"PeriodicalId\":65786,\"journal\":{\"name\":\"复杂系统建模与仿真(英文)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/iel7/9420428/9673697/09673698.pdf\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"复杂系统建模与仿真(英文)\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9673698/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"复杂系统建模与仿真(英文)","FirstCategoryId":"1089","ListUrlMain":"https://ieeexplore.ieee.org/document/9673698/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

生产调度作为制造系统的关键组成部分,通过合理确定加工路径、机器分配、执行时间等主要因素,实现利润、效率、能耗等目标的优化。由于约束条件的大规模和强耦合性,以及某些场景下的实时性要求,使得制造调度问题的求解面临很大的挑战。随着机器学习的发展,强化学习(Reinforcement learning, RL)在各种决策问题上取得了突破。针对制造调度问题,本文总结了状态和动作的设计,梳理了基于强化学习的调度算法,回顾了强化学习在不同类型调度问题中的应用,并讨论了强化学习和元启发式的融合模式。最后,分析了当前研究中存在的问题,指出了未来的研究方向和重要内容,以促进基于rl的调度优化的研究与应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Review of Reinforcement Learning Based Intelligent Optimization for Manufacturing Scheduling
As the critical component of manufacturing systems, production scheduling aims to optimize objectives in terms of profit, efficiency, and energy consumption by reasonably determining the main factors including processing path, machine assignment, execute time and so on. Due to the large scale and strongly coupled constraints nature, as well as the real-time solving requirement in certain scenarios, it faces great challenges in solving the manufacturing scheduling problems. With the development of machine learning, Reinforcement Learning (RL) has made breakthroughs in a variety of decision-making problems. For manufacturing scheduling problems, in this paper we summarize the designs of state and action, tease out RL-based algorithm for scheduling, review the applications of RL for different types of scheduling problems, and then discuss the fusion modes of reinforcement learning and meta-heuristics. Finally, we analyze the existing problems in current research, and point out the future research direction and significant contents to promote the research and applications of RL-based scheduling optimization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信