复杂网络负载均衡的吸引域分析

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Mengbang Zou;Weisi Guo
{"title":"复杂网络负载均衡的吸引域分析","authors":"Mengbang Zou;Weisi Guo","doi":"10.1093/comnet/cnac025","DOIUrl":null,"url":null,"abstract":"Many complex engineering systems network together functional elements to balance demand spikes but suffer from stability issues due to cascades. The research challenge is to prove the stability conditions for any arbitrarily large and dynamic network topology with any complex balancing function. Most current analyses linearize the system around fixed equilibrium solutions. This approach is insufficient for dynamic networks with multiple equilibria, for example, with different initial conditions or perturbations. Region of attraction (ROA) estimation is needed in order to ensure that the desirable equilibria are reached. This is challenging because a networked system of non-linear dynamics requires compression to obtain a tractable ROA analysis. Here, we employ master stability-inspired method to reveal that the extreme eigenvalues of the Laplacian are explicitly linked to the ROA. This novel relationship between the ROA and the largest eigenvalue in turn provides a pathway to augmenting the network structure to improve stability. We demonstrate using a case study on how the network with multiple equilibria can be optimized to ensure stability.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Analysing region of attraction of load balancing on complex network\",\"authors\":\"Mengbang Zou;Weisi Guo\",\"doi\":\"10.1093/comnet/cnac025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many complex engineering systems network together functional elements to balance demand spikes but suffer from stability issues due to cascades. The research challenge is to prove the stability conditions for any arbitrarily large and dynamic network topology with any complex balancing function. Most current analyses linearize the system around fixed equilibrium solutions. This approach is insufficient for dynamic networks with multiple equilibria, for example, with different initial conditions or perturbations. Region of attraction (ROA) estimation is needed in order to ensure that the desirable equilibria are reached. This is challenging because a networked system of non-linear dynamics requires compression to obtain a tractable ROA analysis. Here, we employ master stability-inspired method to reveal that the extreme eigenvalues of the Laplacian are explicitly linked to the ROA. This novel relationship between the ROA and the largest eigenvalue in turn provides a pathway to augmenting the network structure to improve stability. We demonstrate using a case study on how the network with multiple equilibria can be optimized to ensure stability.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10070452/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://ieeexplore.ieee.org/document/10070452/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 2

摘要

许多复杂的工程系统将功能元件连接在一起,以平衡需求峰值,但由于级联而存在稳定性问题。研究的挑战是证明任何具有复杂平衡函数的任意大的动态网络拓扑的稳定性条件。大多数电流分析将系统线性化为固定平衡解。这种方法不适用于具有多重平衡的动态网络,例如,具有不同初始条件或扰动的动态网络。为了确保达到理想的平衡,需要进行吸引区域(ROA)估计。这是具有挑战性的,因为非线性动力学的网络化系统需要压缩以获得易于处理的ROA分析。在这里,我们采用主稳定性启发的方法来揭示拉普拉斯算子的极端特征值与ROA是明确联系的。ROA和最大特征值之间的这种新关系反过来提供了一种增强网络结构以提高稳定性的途径。我们通过案例研究证明了如何优化具有多重平衡的网络以确保稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysing region of attraction of load balancing on complex network
Many complex engineering systems network together functional elements to balance demand spikes but suffer from stability issues due to cascades. The research challenge is to prove the stability conditions for any arbitrarily large and dynamic network topology with any complex balancing function. Most current analyses linearize the system around fixed equilibrium solutions. This approach is insufficient for dynamic networks with multiple equilibria, for example, with different initial conditions or perturbations. Region of attraction (ROA) estimation is needed in order to ensure that the desirable equilibria are reached. This is challenging because a networked system of non-linear dynamics requires compression to obtain a tractable ROA analysis. Here, we employ master stability-inspired method to reveal that the extreme eigenvalues of the Laplacian are explicitly linked to the ROA. This novel relationship between the ROA and the largest eigenvalue in turn provides a pathway to augmenting the network structure to improve stability. We demonstrate using a case study on how the network with multiple equilibria can be optimized to ensure stability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信