Martina Contisciani;Hadiseh Safdari;Caterina De Bacco
{"title":"基于边对联合建模的网络社区检测与互易性研究","authors":"Martina Contisciani;Hadiseh Safdari;Caterina De Bacco","doi":"10.1093/comnet/cnac034","DOIUrl":null,"url":null,"abstract":"To unravel the driving patterns of networks, the most popular models rely on community detection algorithms. However, these approaches are generally unable to reproduce the structural features of the network. Therefore, attempts are always made to develop models that incorporate these network properties beside the community structure. In this article, we present a probabilistic generative model and an efficient algorithm to both perform community detection and capture reciprocity in networks. Our approach jointly models pairs of edges with exact two-edge joint distributions. In addition, it provides closed-form analytical expressions for both marginal and conditional distributions. We validate our model on synthetic data in recovering communities, edge prediction tasks and generating synthetic networks that replicate the reciprocity values observed in real networks. We also highlight these findings on two real datasets that are relevant for social scientists and behavioural ecologists. Our method overcomes the limitations of both standard algorithms and recent models that incorporate reciprocity through a pseudo-likelihood approximation. The inference of the model parameters is implemented by the efficient and scalable expectation–maximization algorithm, as it exploits the sparsity of the dataset. We provide an open-source implementation of the code online.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8016804/10070447/10070458.pdf","citationCount":"11","resultStr":"{\"title\":\"Community detection and reciprocity in networks by jointly modelling pairs of edges\",\"authors\":\"Martina Contisciani;Hadiseh Safdari;Caterina De Bacco\",\"doi\":\"10.1093/comnet/cnac034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To unravel the driving patterns of networks, the most popular models rely on community detection algorithms. However, these approaches are generally unable to reproduce the structural features of the network. Therefore, attempts are always made to develop models that incorporate these network properties beside the community structure. In this article, we present a probabilistic generative model and an efficient algorithm to both perform community detection and capture reciprocity in networks. Our approach jointly models pairs of edges with exact two-edge joint distributions. In addition, it provides closed-form analytical expressions for both marginal and conditional distributions. We validate our model on synthetic data in recovering communities, edge prediction tasks and generating synthetic networks that replicate the reciprocity values observed in real networks. We also highlight these findings on two real datasets that are relevant for social scientists and behavioural ecologists. Our method overcomes the limitations of both standard algorithms and recent models that incorporate reciprocity through a pseudo-likelihood approximation. The inference of the model parameters is implemented by the efficient and scalable expectation–maximization algorithm, as it exploits the sparsity of the dataset. We provide an open-source implementation of the code online.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/iel7/8016804/10070447/10070458.pdf\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10070458/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://ieeexplore.ieee.org/document/10070458/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Community detection and reciprocity in networks by jointly modelling pairs of edges
To unravel the driving patterns of networks, the most popular models rely on community detection algorithms. However, these approaches are generally unable to reproduce the structural features of the network. Therefore, attempts are always made to develop models that incorporate these network properties beside the community structure. In this article, we present a probabilistic generative model and an efficient algorithm to both perform community detection and capture reciprocity in networks. Our approach jointly models pairs of edges with exact two-edge joint distributions. In addition, it provides closed-form analytical expressions for both marginal and conditional distributions. We validate our model on synthetic data in recovering communities, edge prediction tasks and generating synthetic networks that replicate the reciprocity values observed in real networks. We also highlight these findings on two real datasets that are relevant for social scientists and behavioural ecologists. Our method overcomes the limitations of both standard algorithms and recent models that incorporate reciprocity through a pseudo-likelihood approximation. The inference of the model parameters is implemented by the efficient and scalable expectation–maximization algorithm, as it exploits the sparsity of the dataset. We provide an open-source implementation of the code online.