{"title":"千兆网络用光电器件","authors":"S. Suzuki;K. Kasahara","doi":"10.1109/80.167002","DOIUrl":null,"url":null,"abstract":"A photonic asynchronous transfer mode (ATM) switch that can achieve very high throughput by using two-dimensional optical functional devices for both optical buffer memories and an optical self-routing circuit is described. The photonic switch uses vertical to surface transmission electrophotonic devices (VSTEPs). It is shown that the optical cell signal speed in the proposed optical buffer memory can reach around 10 Gb/s, and the optical header-driven, self-routing circuit can switch 10 Gb/s optical signals. The maximum input and output port numbers in the self-routing circuit are estimated to be around 100. As a result, the total throughput for the photonic ATM switch can reach as large as the Tb/s level.<\n<ETX>></ETX>","PeriodicalId":100626,"journal":{"name":"IEEE LTS","volume":"3 3","pages":"36-40"},"PeriodicalIF":0.0000,"publicationDate":"1992-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/80.167002","citationCount":"4","resultStr":"{\"title\":\"Electro-photonic devices for gigabit networks\",\"authors\":\"S. Suzuki;K. Kasahara\",\"doi\":\"10.1109/80.167002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A photonic asynchronous transfer mode (ATM) switch that can achieve very high throughput by using two-dimensional optical functional devices for both optical buffer memories and an optical self-routing circuit is described. The photonic switch uses vertical to surface transmission electrophotonic devices (VSTEPs). It is shown that the optical cell signal speed in the proposed optical buffer memory can reach around 10 Gb/s, and the optical header-driven, self-routing circuit can switch 10 Gb/s optical signals. The maximum input and output port numbers in the self-routing circuit are estimated to be around 100. As a result, the total throughput for the photonic ATM switch can reach as large as the Tb/s level.<\\n<ETX>></ETX>\",\"PeriodicalId\":100626,\"journal\":{\"name\":\"IEEE LTS\",\"volume\":\"3 3\",\"pages\":\"36-40\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/80.167002\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE LTS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/167002/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE LTS","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/167002/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A photonic asynchronous transfer mode (ATM) switch that can achieve very high throughput by using two-dimensional optical functional devices for both optical buffer memories and an optical self-routing circuit is described. The photonic switch uses vertical to surface transmission electrophotonic devices (VSTEPs). It is shown that the optical cell signal speed in the proposed optical buffer memory can reach around 10 Gb/s, and the optical header-driven, self-routing circuit can switch 10 Gb/s optical signals. The maximum input and output port numbers in the self-routing circuit are estimated to be around 100. As a result, the total throughput for the photonic ATM switch can reach as large as the Tb/s level.<
>