{"title":"具有随机噪声高阶相互作用的时间超图的非线性一致性动力学","authors":"Yilun Shang","doi":"10.1093/comnet/cnad009","DOIUrl":null,"url":null,"abstract":"Complex networks encoding the topological architecture of real-world complex systems have recently been undergoing a fundamental transition beyond pairwise interactions described by dyadic connections among nodes. Higher-order structures such as hypergraphs and simplicial complexes have been utilized to model group interactions for varied networked systems from brain, society, to biological and physical systems. In this article, we investigate the consensus dynamics over temporal hypergraphs featuring non-linear modulating functions, time-dependent topology and random perturbations. Based upon analytical tools in matrix, hypergraph, stochastic process and real analysis, we establish the sufficient conditions for all nodes in the network to reach consensus in the sense of almost sure convergence and \n<tex>$\\mathscr{L}^2$</tex>\n convergence. The rate of consensus and the moments of the equilibrium have been determined. Our results offer a theoretical foundation for the recent series of numerical studies and physical observations in the multi-body non-linear dynamical systems.","PeriodicalId":15442,"journal":{"name":"Journal of complex networks","volume":"11 2","pages":"509-512"},"PeriodicalIF":2.2000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8016804/10056757/10091815.pdf","citationCount":"6","resultStr":"{\"title\":\"Non-linear consensus dynamics on temporal hypergraphs with random noisy higher-order interactions\",\"authors\":\"Yilun Shang\",\"doi\":\"10.1093/comnet/cnad009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Complex networks encoding the topological architecture of real-world complex systems have recently been undergoing a fundamental transition beyond pairwise interactions described by dyadic connections among nodes. Higher-order structures such as hypergraphs and simplicial complexes have been utilized to model group interactions for varied networked systems from brain, society, to biological and physical systems. In this article, we investigate the consensus dynamics over temporal hypergraphs featuring non-linear modulating functions, time-dependent topology and random perturbations. Based upon analytical tools in matrix, hypergraph, stochastic process and real analysis, we establish the sufficient conditions for all nodes in the network to reach consensus in the sense of almost sure convergence and \\n<tex>$\\\\mathscr{L}^2$</tex>\\n convergence. The rate of consensus and the moments of the equilibrium have been determined. Our results offer a theoretical foundation for the recent series of numerical studies and physical observations in the multi-body non-linear dynamical systems.\",\"PeriodicalId\":15442,\"journal\":{\"name\":\"Journal of complex networks\",\"volume\":\"11 2\",\"pages\":\"509-512\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/iel7/8016804/10056757/10091815.pdf\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of complex networks\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10091815/\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of complex networks","FirstCategoryId":"100","ListUrlMain":"https://ieeexplore.ieee.org/document/10091815/","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Non-linear consensus dynamics on temporal hypergraphs with random noisy higher-order interactions
Complex networks encoding the topological architecture of real-world complex systems have recently been undergoing a fundamental transition beyond pairwise interactions described by dyadic connections among nodes. Higher-order structures such as hypergraphs and simplicial complexes have been utilized to model group interactions for varied networked systems from brain, society, to biological and physical systems. In this article, we investigate the consensus dynamics over temporal hypergraphs featuring non-linear modulating functions, time-dependent topology and random perturbations. Based upon analytical tools in matrix, hypergraph, stochastic process and real analysis, we establish the sufficient conditions for all nodes in the network to reach consensus in the sense of almost sure convergence and
$\mathscr{L}^2$
convergence. The rate of consensus and the moments of the equilibrium have been determined. Our results offer a theoretical foundation for the recent series of numerical studies and physical observations in the multi-body non-linear dynamical systems.
期刊介绍:
Journal of Complex Networks publishes original articles and reviews with a significant contribution to the analysis and understanding of complex networks and its applications in diverse fields. Complex networks are loosely defined as networks with nontrivial topology and dynamics, which appear as the skeletons of complex systems in the real-world. The journal covers everything from the basic mathematical, physical and computational principles needed for studying complex networks to their applications leading to predictive models in molecular, biological, ecological, informational, engineering, social, technological and other systems. It includes, but is not limited to, the following topics: - Mathematical and numerical analysis of networks - Network theory and computer sciences - Structural analysis of networks - Dynamics on networks - Physical models on networks - Networks and epidemiology - Social, socio-economic and political networks - Ecological networks - Technological and infrastructural networks - Brain and tissue networks - Biological and molecular networks - Spatial networks - Techno-social networks i.e. online social networks, social networking sites, social media - Other applications of networks - Evolving networks - Multilayer networks - Game theory on networks - Biomedicine related networks - Animal social networks - Climate networks - Cognitive, language and informational network