{"title":"基于分类的局部树状网络谱密度快速近似算法","authors":"Grover E C Guzman;André Fujita","doi":"10.1093/comnet/cnad005","DOIUrl":null,"url":null,"abstract":"Graphs have become crucial for representing and examining biological, social and technological interactions. In this context, the graph spectrum is an exciting feature to be studied because it encodes the structural and dynamic characteristics of the graph. Hence, it becomes essential to efficiently compute the graph's spectral distribution (eigenvalue's density function). Recently, some authors proposed degree-based methods to obtain the spectral density of locally tree-like networks in linear time. The bottleneck of their approach is that they assumed that the graph's assortativity is zero. However, most real-world networks, such as social and biological networks, present assortativity. Consequently, their spectral density approximations may be inaccurate. Here, we propose a method that considers assortativity. Our algorithm's time and space complexities are \n<tex>$\\mathscr{O}(d_{\\max}^{2})$</tex>\n, where \n<tex>$d_{\\max}$</tex>\n is the largest degree of the graph. Finally, we show our method's efficacy in simulated and empirical networks.","PeriodicalId":15442,"journal":{"name":"Journal of complex networks","volume":"11 2","pages":"187-211"},"PeriodicalIF":2.2000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A fast algorithm to approximate the spectral density of locally tree-like networks with assortativity\",\"authors\":\"Grover E C Guzman;André Fujita\",\"doi\":\"10.1093/comnet/cnad005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Graphs have become crucial for representing and examining biological, social and technological interactions. In this context, the graph spectrum is an exciting feature to be studied because it encodes the structural and dynamic characteristics of the graph. Hence, it becomes essential to efficiently compute the graph's spectral distribution (eigenvalue's density function). Recently, some authors proposed degree-based methods to obtain the spectral density of locally tree-like networks in linear time. The bottleneck of their approach is that they assumed that the graph's assortativity is zero. However, most real-world networks, such as social and biological networks, present assortativity. Consequently, their spectral density approximations may be inaccurate. Here, we propose a method that considers assortativity. Our algorithm's time and space complexities are \\n<tex>$\\\\mathscr{O}(d_{\\\\max}^{2})$</tex>\\n, where \\n<tex>$d_{\\\\max}$</tex>\\n is the largest degree of the graph. Finally, we show our method's efficacy in simulated and empirical networks.\",\"PeriodicalId\":15442,\"journal\":{\"name\":\"Journal of complex networks\",\"volume\":\"11 2\",\"pages\":\"187-211\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of complex networks\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10075378/\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of complex networks","FirstCategoryId":"100","ListUrlMain":"https://ieeexplore.ieee.org/document/10075378/","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
A fast algorithm to approximate the spectral density of locally tree-like networks with assortativity
Graphs have become crucial for representing and examining biological, social and technological interactions. In this context, the graph spectrum is an exciting feature to be studied because it encodes the structural and dynamic characteristics of the graph. Hence, it becomes essential to efficiently compute the graph's spectral distribution (eigenvalue's density function). Recently, some authors proposed degree-based methods to obtain the spectral density of locally tree-like networks in linear time. The bottleneck of their approach is that they assumed that the graph's assortativity is zero. However, most real-world networks, such as social and biological networks, present assortativity. Consequently, their spectral density approximations may be inaccurate. Here, we propose a method that considers assortativity. Our algorithm's time and space complexities are
$\mathscr{O}(d_{\max}^{2})$
, where
$d_{\max}$
is the largest degree of the graph. Finally, we show our method's efficacy in simulated and empirical networks.
期刊介绍:
Journal of Complex Networks publishes original articles and reviews with a significant contribution to the analysis and understanding of complex networks and its applications in diverse fields. Complex networks are loosely defined as networks with nontrivial topology and dynamics, which appear as the skeletons of complex systems in the real-world. The journal covers everything from the basic mathematical, physical and computational principles needed for studying complex networks to their applications leading to predictive models in molecular, biological, ecological, informational, engineering, social, technological and other systems. It includes, but is not limited to, the following topics: - Mathematical and numerical analysis of networks - Network theory and computer sciences - Structural analysis of networks - Dynamics on networks - Physical models on networks - Networks and epidemiology - Social, socio-economic and political networks - Ecological networks - Technological and infrastructural networks - Brain and tissue networks - Biological and molecular networks - Spatial networks - Techno-social networks i.e. online social networks, social networking sites, social media - Other applications of networks - Evolving networks - Multilayer networks - Game theory on networks - Biomedicine related networks - Animal social networks - Climate networks - Cognitive, language and informational network