{"title":"利用自动驾驶汽车开放数据进行实时交通状态测量","authors":"Zhaohan Wang;Profita Keo;Meead Saberi","doi":"10.1109/OJITS.2023.3298893","DOIUrl":null,"url":null,"abstract":"Autonomous vehicle (AV) technologies are expected to disrupt the existing urban transportation systems. AVs’ multi-sensor system can generate large amount of data, often used for localization and safety purposes. This study proposes and demonstrates a practical framework for real-time measurement of local traffic states using LiDAR data from AVs. Fundamental traffic flow variables including volume, density, and speed are computed along with the traffic time-space diagrams. The framework is tested using the Waymo Open dataset. Results provide insights into the possibility of real-time traffic state estimation using AVs’ data for traffic operations and management applications.","PeriodicalId":100631,"journal":{"name":"IEEE Open Journal of Intelligent Transportation Systems","volume":"4 ","pages":"602-610"},"PeriodicalIF":4.6000,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8784355/9999144/10195163.pdf","citationCount":"0","resultStr":"{\"title\":\"Real-Time Traffic State Measurement Using Autonomous Vehicles Open Data\",\"authors\":\"Zhaohan Wang;Profita Keo;Meead Saberi\",\"doi\":\"10.1109/OJITS.2023.3298893\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Autonomous vehicle (AV) technologies are expected to disrupt the existing urban transportation systems. AVs’ multi-sensor system can generate large amount of data, often used for localization and safety purposes. This study proposes and demonstrates a practical framework for real-time measurement of local traffic states using LiDAR data from AVs. Fundamental traffic flow variables including volume, density, and speed are computed along with the traffic time-space diagrams. The framework is tested using the Waymo Open dataset. Results provide insights into the possibility of real-time traffic state estimation using AVs’ data for traffic operations and management applications.\",\"PeriodicalId\":100631,\"journal\":{\"name\":\"IEEE Open Journal of Intelligent Transportation Systems\",\"volume\":\"4 \",\"pages\":\"602-610\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/iel7/8784355/9999144/10195163.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of Intelligent Transportation Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10195163/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Intelligent Transportation Systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10195163/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Real-Time Traffic State Measurement Using Autonomous Vehicles Open Data
Autonomous vehicle (AV) technologies are expected to disrupt the existing urban transportation systems. AVs’ multi-sensor system can generate large amount of data, often used for localization and safety purposes. This study proposes and demonstrates a practical framework for real-time measurement of local traffic states using LiDAR data from AVs. Fundamental traffic flow variables including volume, density, and speed are computed along with the traffic time-space diagrams. The framework is tested using the Waymo Open dataset. Results provide insights into the possibility of real-time traffic state estimation using AVs’ data for traffic operations and management applications.