非线性方程求解的智能优化算法研究进展

Wenyin Gong;Zuowen Liao;Xianyan Mi;Ling Wang;Yuanyuan Guo
{"title":"非线性方程求解的智能优化算法研究进展","authors":"Wenyin Gong;Zuowen Liao;Xianyan Mi;Ling Wang;Yuanyuan Guo","doi":"10.23919/CSMS.2021.0002","DOIUrl":null,"url":null,"abstract":"Nonlinear Equations (NEs), which may usually have multiple roots, are ubiquitous in diverse fields. One of the main purposes of solving NEs is to locate as many roots as possible simultaneously in a single run, however, it is a difficult and challenging task in numerical computation. In recent years, Intelligent Optimization Algorithms (IOAs) have shown to be particularly effective in solving NEs. This paper provides a comprehensive survey on IOAs that have been exploited to locate multiple roots of NEs. This paper first revisits the fundamental definition of NEs and reviews the most recent development of the transformation techniques. Then, solving NEs with IOAs is reviewed, followed by the benchmark functions and the performance comparison of several state-of-the-art algorithms. Finally, this paper points out the challenges and some possible open issues for solving NEs.","PeriodicalId":65786,"journal":{"name":"复杂系统建模与仿真(英文)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.23919/CSMS.2021.0002","citationCount":"41","resultStr":"{\"title\":\"Nonlinear Equations Solving with Intelligent Optimization Algorithms: A Survey\",\"authors\":\"Wenyin Gong;Zuowen Liao;Xianyan Mi;Ling Wang;Yuanyuan Guo\",\"doi\":\"10.23919/CSMS.2021.0002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nonlinear Equations (NEs), which may usually have multiple roots, are ubiquitous in diverse fields. One of the main purposes of solving NEs is to locate as many roots as possible simultaneously in a single run, however, it is a difficult and challenging task in numerical computation. In recent years, Intelligent Optimization Algorithms (IOAs) have shown to be particularly effective in solving NEs. This paper provides a comprehensive survey on IOAs that have been exploited to locate multiple roots of NEs. This paper first revisits the fundamental definition of NEs and reviews the most recent development of the transformation techniques. Then, solving NEs with IOAs is reviewed, followed by the benchmark functions and the performance comparison of several state-of-the-art algorithms. Finally, this paper points out the challenges and some possible open issues for solving NEs.\",\"PeriodicalId\":65786,\"journal\":{\"name\":\"复杂系统建模与仿真(英文)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.23919/CSMS.2021.0002\",\"citationCount\":\"41\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"复杂系统建模与仿真(英文)\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9426462/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"复杂系统建模与仿真(英文)","FirstCategoryId":"1089","ListUrlMain":"https://ieeexplore.ieee.org/document/9426462/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41

摘要

非线性方程通常具有多个根,在不同的领域中普遍存在。求解NE的主要目的之一是在一次运行中同时定位尽可能多的根,然而,这在数值计算中是一项困难且具有挑战性的任务。近年来,智能优化算法(IOAs)已被证明在解决NE方面特别有效。本文对已被用于定位NE的多个根的IOA进行了全面的调查。本文首先回顾了NE的基本定义,并回顾了转换技术的最新发展。然后,回顾了用IOA解决网元的方法,然后介绍了几种最先进算法的基准函数和性能比较。最后,本文指出了解决网元的挑战和一些可能存在的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonlinear Equations Solving with Intelligent Optimization Algorithms: A Survey
Nonlinear Equations (NEs), which may usually have multiple roots, are ubiquitous in diverse fields. One of the main purposes of solving NEs is to locate as many roots as possible simultaneously in a single run, however, it is a difficult and challenging task in numerical computation. In recent years, Intelligent Optimization Algorithms (IOAs) have shown to be particularly effective in solving NEs. This paper provides a comprehensive survey on IOAs that have been exploited to locate multiple roots of NEs. This paper first revisits the fundamental definition of NEs and reviews the most recent development of the transformation techniques. Then, solving NEs with IOAs is reviewed, followed by the benchmark functions and the performance comparison of several state-of-the-art algorithms. Finally, this paper points out the challenges and some possible open issues for solving NEs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信