基于无监督学习的数据包络分析泛化

IF 3.7 4区 管理学 Q2 OPERATIONS RESEARCH & MANAGEMENT SCIENCE
Raul Moragues , Juan Aparicio , Miriam Esteve
{"title":"基于无监督学习的数据包络分析泛化","authors":"Raul Moragues , Juan Aparicio , Miriam Esteve","doi":"10.1016/j.orp.2023.100284","DOIUrl":null,"url":null,"abstract":"","PeriodicalId":38055,"journal":{"name":"Operations Research Perspectives","volume":"11 ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An unsupervised learning-based generalization of Data Envelopment Analysis\",\"authors\":\"Raul Moragues , Juan Aparicio , Miriam Esteve\",\"doi\":\"10.1016/j.orp.2023.100284\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\",\"PeriodicalId\":38055,\"journal\":{\"name\":\"Operations Research Perspectives\",\"volume\":\"11 \",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Operations Research Perspectives\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214716023000192\",\"RegionNum\":4,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPERATIONS RESEARCH & MANAGEMENT SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Operations Research Perspectives","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214716023000192","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们介绍了一种用于生产边界估计的无监督机器学习方法。这种新方法满足微观经济学的基本性质,如凸性和自由可支配性(形状约束)。该方法通过将一类支持向量机与分段线性变换映射相适应,推广了数据包络分析(DEA)。该新技术旨在减少DEA中出现的过拟合问题。介绍了如何通过定向距离函数来度量技术效率。最后,我们通过计算经验评估了新技术的性能,表明在某些情况下,前沿估计的均方误差比标准DEA高出83%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An unsupervised learning-based generalization of Data Envelopment Analysis
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Operations Research Perspectives
Operations Research Perspectives Mathematics-Statistics and Probability
CiteScore
6.40
自引率
0.00%
发文量
36
审稿时长
27 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信