{"title":"基于知识图谱的可理解人工智能:综述","authors":"Simon Schramm , Christoph Wehner , Ute Schmid","doi":"10.1016/j.websem.2023.100806","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Artificial Intelligence applications gradually move outside the safe walls of research labs and invade our daily lives. This is also true for </span>Machine Learning methods on Knowledge Graphs, which has led to a steady increase in their application since the beginning of the </span><span><math><mrow><mn>21</mn><mi>st</mi></mrow></math></span><span><span> century. However, in many applications, users require an explanation of the Artificial Intelligence’s decision. This led to increased demand for Comprehensible Artificial Intelligence. Knowledge Graphs epitomize fertile soil for Comprehensible Artificial Intelligence, due to their ability to display connected data, i.e. knowledge, in a human- as well as machine-readable way. This survey gives a short history to Comprehensible Artificial Intelligence on Knowledge Graphs. Furthermore, we contribute by arguing that the concept </span>Explainable Artificial Intelligence is overloaded and overlapping with Interpretable Machine Learning. By introducing the parent concept Comprehensible Artificial Intelligence, we provide a clear-cut distinction of both concepts while accounting for their similarities. Thus, we provide in this survey a case for Comprehensible Artificial Intelligence on Knowledge Graphs consisting of Interpretable Machine Learning on Knowledge Graphs and Explainable Artificial Intelligence on Knowledge Graphs. This leads to the introduction of a novel taxonomy for Comprehensible Artificial Intelligence on Knowledge Graphs. In addition, a comprehensive overview of the research on Comprehensible Artificial Intelligence on Knowledge Graphs is presented and put into the context of the taxonomy. Finally, research gaps in the field of Comprehensible Artificial Intelligence on Knowledge Graphs are identified for future research.</span></p></div>","PeriodicalId":49951,"journal":{"name":"Journal of Web Semantics","volume":"79 ","pages":"Article 100806"},"PeriodicalIF":2.1000,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Comprehensible Artificial Intelligence on Knowledge Graphs: A survey\",\"authors\":\"Simon Schramm , Christoph Wehner , Ute Schmid\",\"doi\":\"10.1016/j.websem.2023.100806\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>Artificial Intelligence applications gradually move outside the safe walls of research labs and invade our daily lives. This is also true for </span>Machine Learning methods on Knowledge Graphs, which has led to a steady increase in their application since the beginning of the </span><span><math><mrow><mn>21</mn><mi>st</mi></mrow></math></span><span><span> century. However, in many applications, users require an explanation of the Artificial Intelligence’s decision. This led to increased demand for Comprehensible Artificial Intelligence. Knowledge Graphs epitomize fertile soil for Comprehensible Artificial Intelligence, due to their ability to display connected data, i.e. knowledge, in a human- as well as machine-readable way. This survey gives a short history to Comprehensible Artificial Intelligence on Knowledge Graphs. Furthermore, we contribute by arguing that the concept </span>Explainable Artificial Intelligence is overloaded and overlapping with Interpretable Machine Learning. By introducing the parent concept Comprehensible Artificial Intelligence, we provide a clear-cut distinction of both concepts while accounting for their similarities. Thus, we provide in this survey a case for Comprehensible Artificial Intelligence on Knowledge Graphs consisting of Interpretable Machine Learning on Knowledge Graphs and Explainable Artificial Intelligence on Knowledge Graphs. This leads to the introduction of a novel taxonomy for Comprehensible Artificial Intelligence on Knowledge Graphs. In addition, a comprehensive overview of the research on Comprehensible Artificial Intelligence on Knowledge Graphs is presented and put into the context of the taxonomy. Finally, research gaps in the field of Comprehensible Artificial Intelligence on Knowledge Graphs are identified for future research.</span></p></div>\",\"PeriodicalId\":49951,\"journal\":{\"name\":\"Journal of Web Semantics\",\"volume\":\"79 \",\"pages\":\"Article 100806\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Web Semantics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1570826823000355\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Web Semantics","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570826823000355","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Comprehensible Artificial Intelligence on Knowledge Graphs: A survey
Artificial Intelligence applications gradually move outside the safe walls of research labs and invade our daily lives. This is also true for Machine Learning methods on Knowledge Graphs, which has led to a steady increase in their application since the beginning of the century. However, in many applications, users require an explanation of the Artificial Intelligence’s decision. This led to increased demand for Comprehensible Artificial Intelligence. Knowledge Graphs epitomize fertile soil for Comprehensible Artificial Intelligence, due to their ability to display connected data, i.e. knowledge, in a human- as well as machine-readable way. This survey gives a short history to Comprehensible Artificial Intelligence on Knowledge Graphs. Furthermore, we contribute by arguing that the concept Explainable Artificial Intelligence is overloaded and overlapping with Interpretable Machine Learning. By introducing the parent concept Comprehensible Artificial Intelligence, we provide a clear-cut distinction of both concepts while accounting for their similarities. Thus, we provide in this survey a case for Comprehensible Artificial Intelligence on Knowledge Graphs consisting of Interpretable Machine Learning on Knowledge Graphs and Explainable Artificial Intelligence on Knowledge Graphs. This leads to the introduction of a novel taxonomy for Comprehensible Artificial Intelligence on Knowledge Graphs. In addition, a comprehensive overview of the research on Comprehensible Artificial Intelligence on Knowledge Graphs is presented and put into the context of the taxonomy. Finally, research gaps in the field of Comprehensible Artificial Intelligence on Knowledge Graphs are identified for future research.
期刊介绍:
The Journal of Web Semantics is an interdisciplinary journal based on research and applications of various subject areas that contribute to the development of a knowledge-intensive and intelligent service Web. These areas include: knowledge technologies, ontology, agents, databases and the semantic grid, obviously disciplines like information retrieval, language technology, human-computer interaction and knowledge discovery are of major relevance as well. All aspects of the Semantic Web development are covered. The publication of large-scale experiments and their analysis is also encouraged to clearly illustrate scenarios and methods that introduce semantics into existing Web interfaces, contents and services. The journal emphasizes the publication of papers that combine theories, methods and experiments from different subject areas in order to deliver innovative semantic methods and applications.