Guangchao Zhan , Wangyuan Zong , Lina Ma , Junyi Wei , Wei Liu
{"title":"即采油菜籽植物的生物力学特性:测量与分析","authors":"Guangchao Zhan , Wangyuan Zong , Lina Ma , Junyi Wei , Wei Liu","doi":"10.1016/j.inpa.2022.04.002","DOIUrl":null,"url":null,"abstract":"<div><p>A large loss occurs in the combine harvesting of rapeseeds due to the fragility of rapeseed pods, and all the more so with the vibration of the combine header and the collision between the header and plants. Seed loss is greatly affected by the biomechanical properties of ready-to-harvest rapeseed plants. To understand the mechanism of pod cracking and seed loss and to propose measures for alleviating them, it is needed to study the biomechanical properties of ready-to-harvest rapeseed plants. To this end, “Huayouza 62”, a widely planted rapeseed variety in central China, was selected to study the biomechanical properties, including pod-cracking resistance, main stem-shearing resistance and resonant frequencies, of whole plants. The results showed that the distribution of pod-cracking resistance forces was 1.333–6.100 N in the mature stage, and the pod width and thickness had a significant influence on the cracking resistance. The main influencing factor of the main stem-shearing resistance was the stem diameter. A thicker main stem resulted in a larger shearing resistance force but a smaller shear stress. The moisture contents of the main stems varied from 47.71% to 76.13%. However, the varying moisture contents did not show a significant impact on the shearing resistance. The resonant frequencies of whole rapeseed plants ready for harvest ranged from 6.5 Hz to 7.5 Hz, which was close to the excitation frequency of the cutter bar on the 4LL-1.5Y harvester. This study lays a foundation for improving the design and construction of harvesting devices for rapeseed plants to reduce seed loss.</p></div>","PeriodicalId":53443,"journal":{"name":"Information Processing in Agriculture","volume":"10 3","pages":"Pages 391-399"},"PeriodicalIF":7.7000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biomechanical properties of ready-to-harvest rapeseed plants: Measurement and analysis\",\"authors\":\"Guangchao Zhan , Wangyuan Zong , Lina Ma , Junyi Wei , Wei Liu\",\"doi\":\"10.1016/j.inpa.2022.04.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A large loss occurs in the combine harvesting of rapeseeds due to the fragility of rapeseed pods, and all the more so with the vibration of the combine header and the collision between the header and plants. Seed loss is greatly affected by the biomechanical properties of ready-to-harvest rapeseed plants. To understand the mechanism of pod cracking and seed loss and to propose measures for alleviating them, it is needed to study the biomechanical properties of ready-to-harvest rapeseed plants. To this end, “Huayouza 62”, a widely planted rapeseed variety in central China, was selected to study the biomechanical properties, including pod-cracking resistance, main stem-shearing resistance and resonant frequencies, of whole plants. The results showed that the distribution of pod-cracking resistance forces was 1.333–6.100 N in the mature stage, and the pod width and thickness had a significant influence on the cracking resistance. The main influencing factor of the main stem-shearing resistance was the stem diameter. A thicker main stem resulted in a larger shearing resistance force but a smaller shear stress. The moisture contents of the main stems varied from 47.71% to 76.13%. However, the varying moisture contents did not show a significant impact on the shearing resistance. The resonant frequencies of whole rapeseed plants ready for harvest ranged from 6.5 Hz to 7.5 Hz, which was close to the excitation frequency of the cutter bar on the 4LL-1.5Y harvester. This study lays a foundation for improving the design and construction of harvesting devices for rapeseed plants to reduce seed loss.</p></div>\",\"PeriodicalId\":53443,\"journal\":{\"name\":\"Information Processing in Agriculture\",\"volume\":\"10 3\",\"pages\":\"Pages 391-399\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Processing in Agriculture\",\"FirstCategoryId\":\"1091\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214317322000427\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing in Agriculture","FirstCategoryId":"1091","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214317322000427","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
Biomechanical properties of ready-to-harvest rapeseed plants: Measurement and analysis
A large loss occurs in the combine harvesting of rapeseeds due to the fragility of rapeseed pods, and all the more so with the vibration of the combine header and the collision between the header and plants. Seed loss is greatly affected by the biomechanical properties of ready-to-harvest rapeseed plants. To understand the mechanism of pod cracking and seed loss and to propose measures for alleviating them, it is needed to study the biomechanical properties of ready-to-harvest rapeseed plants. To this end, “Huayouza 62”, a widely planted rapeseed variety in central China, was selected to study the biomechanical properties, including pod-cracking resistance, main stem-shearing resistance and resonant frequencies, of whole plants. The results showed that the distribution of pod-cracking resistance forces was 1.333–6.100 N in the mature stage, and the pod width and thickness had a significant influence on the cracking resistance. The main influencing factor of the main stem-shearing resistance was the stem diameter. A thicker main stem resulted in a larger shearing resistance force but a smaller shear stress. The moisture contents of the main stems varied from 47.71% to 76.13%. However, the varying moisture contents did not show a significant impact on the shearing resistance. The resonant frequencies of whole rapeseed plants ready for harvest ranged from 6.5 Hz to 7.5 Hz, which was close to the excitation frequency of the cutter bar on the 4LL-1.5Y harvester. This study lays a foundation for improving the design and construction of harvesting devices for rapeseed plants to reduce seed loss.
期刊介绍:
Information Processing in Agriculture (IPA) was established in 2013 and it encourages the development towards a science and technology of information processing in agriculture, through the following aims: • Promote the use of knowledge and methods from the information processing technologies in the agriculture; • Illustrate the experiences and publications of the institutes, universities and government, and also the profitable technologies on agriculture; • Provide opportunities and platform for exchanging knowledge, strategies and experiences among the researchers in information processing worldwide; • Promote and encourage interactions among agriculture Scientists, Meteorologists, Biologists (Pathologists/Entomologists) with IT Professionals and other stakeholders to develop and implement methods, techniques, tools, and issues related to information processing technology in agriculture; • Create and promote expert groups for development of agro-meteorological databases, crop and livestock modelling and applications for development of crop performance based decision support system. Topics of interest include, but are not limited to: • Smart Sensor and Wireless Sensor Network • Remote Sensing • Simulation, Optimization, Modeling and Automatic Control • Decision Support Systems, Intelligent Systems and Artificial Intelligence • Computer Vision and Image Processing • Inspection and Traceability for Food Quality • Precision Agriculture and Intelligent Instrument • The Internet of Things and Cloud Computing • Big Data and Data Mining