Juan José Fernández-Durán, María Mercedes Gregorio-Domínguez
{"title":"基于非负三角和的循环数据回归模型","authors":"Juan José Fernández-Durán, María Mercedes Gregorio-Domínguez","doi":"10.1016/j.jspi.2023.106114","DOIUrl":null,"url":null,"abstract":"<div><p>The parameter space of nonnegative trigonometric sums (NNTS) models for circular data is the surface of a hypersphere<span>; thus, constructing regression models for a circular-dependent variable using NNTS models can comprise fitting great (small) circles on the parameter hypersphere that can identify different regions (rotations) along the great (small) circle. We propose regression models for circular- (angular-) dependent random variables in which the original circular random variable, which is assumed to be distributed (marginally) as an NNTS model, is transformed into a linear random variable such that common methods for linear regression can be applied. The usefulness of NNTS models with skewness and multimodality is shown in examples with simulated and real data.</span></p></div>","PeriodicalId":50039,"journal":{"name":"Journal of Statistical Planning and Inference","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regression models for circular data based on nonnegative trigonometric sums\",\"authors\":\"Juan José Fernández-Durán, María Mercedes Gregorio-Domínguez\",\"doi\":\"10.1016/j.jspi.2023.106114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The parameter space of nonnegative trigonometric sums (NNTS) models for circular data is the surface of a hypersphere<span>; thus, constructing regression models for a circular-dependent variable using NNTS models can comprise fitting great (small) circles on the parameter hypersphere that can identify different regions (rotations) along the great (small) circle. We propose regression models for circular- (angular-) dependent random variables in which the original circular random variable, which is assumed to be distributed (marginally) as an NNTS model, is transformed into a linear random variable such that common methods for linear regression can be applied. The usefulness of NNTS models with skewness and multimodality is shown in examples with simulated and real data.</span></p></div>\",\"PeriodicalId\":50039,\"journal\":{\"name\":\"Journal of Statistical Planning and Inference\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Statistical Planning and Inference\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378375823000836\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Planning and Inference","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378375823000836","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Regression models for circular data based on nonnegative trigonometric sums
The parameter space of nonnegative trigonometric sums (NNTS) models for circular data is the surface of a hypersphere; thus, constructing regression models for a circular-dependent variable using NNTS models can comprise fitting great (small) circles on the parameter hypersphere that can identify different regions (rotations) along the great (small) circle. We propose regression models for circular- (angular-) dependent random variables in which the original circular random variable, which is assumed to be distributed (marginally) as an NNTS model, is transformed into a linear random variable such that common methods for linear regression can be applied. The usefulness of NNTS models with skewness and multimodality is shown in examples with simulated and real data.
期刊介绍:
The Journal of Statistical Planning and Inference offers itself as a multifaceted and all-inclusive bridge between classical aspects of statistics and probability, and the emerging interdisciplinary aspects that have a potential of revolutionizing the subject. While we maintain our traditional strength in statistical inference, design, classical probability, and large sample methods, we also have a far more inclusive and broadened scope to keep up with the new problems that confront us as statisticians, mathematicians, and scientists.
We publish high quality articles in all branches of statistics, probability, discrete mathematics, machine learning, and bioinformatics. We also especially welcome well written and up to date review articles on fundamental themes of statistics, probability, machine learning, and general biostatistics. Thoughtful letters to the editors, interesting problems in need of a solution, and short notes carrying an element of elegance or beauty are equally welcome.