基于非负三角和的循环数据回归模型

IF 0.8 4区 数学 Q3 STATISTICS & PROBABILITY
Juan José Fernández-Durán, María Mercedes Gregorio-Domínguez
{"title":"基于非负三角和的循环数据回归模型","authors":"Juan José Fernández-Durán,&nbsp;María Mercedes Gregorio-Domínguez","doi":"10.1016/j.jspi.2023.106114","DOIUrl":null,"url":null,"abstract":"<div><p>The parameter space of nonnegative trigonometric sums (NNTS) models for circular data is the surface of a hypersphere<span>; thus, constructing regression models for a circular-dependent variable using NNTS models can comprise fitting great (small) circles on the parameter hypersphere that can identify different regions (rotations) along the great (small) circle. We propose regression models for circular- (angular-) dependent random variables in which the original circular random variable, which is assumed to be distributed (marginally) as an NNTS model, is transformed into a linear random variable such that common methods for linear regression can be applied. The usefulness of NNTS models with skewness and multimodality is shown in examples with simulated and real data.</span></p></div>","PeriodicalId":50039,"journal":{"name":"Journal of Statistical Planning and Inference","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regression models for circular data based on nonnegative trigonometric sums\",\"authors\":\"Juan José Fernández-Durán,&nbsp;María Mercedes Gregorio-Domínguez\",\"doi\":\"10.1016/j.jspi.2023.106114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The parameter space of nonnegative trigonometric sums (NNTS) models for circular data is the surface of a hypersphere<span>; thus, constructing regression models for a circular-dependent variable using NNTS models can comprise fitting great (small) circles on the parameter hypersphere that can identify different regions (rotations) along the great (small) circle. We propose regression models for circular- (angular-) dependent random variables in which the original circular random variable, which is assumed to be distributed (marginally) as an NNTS model, is transformed into a linear random variable such that common methods for linear regression can be applied. The usefulness of NNTS models with skewness and multimodality is shown in examples with simulated and real data.</span></p></div>\",\"PeriodicalId\":50039,\"journal\":{\"name\":\"Journal of Statistical Planning and Inference\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Statistical Planning and Inference\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378375823000836\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Planning and Inference","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378375823000836","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

圆形数据的非负三角和(NNTS)模型的参数空间是超球面;因此,使用NNTS模型构建圆形因变量的回归模型可以包括在参数超球面上拟合大(小)圆,该参数超球面可以识别沿着大(小的)圆的不同区域(旋转)。我们提出了圆形(角度)相关随机变量的回归模型,其中假设作为NNTS模型(边际)分布的原始圆形随机变量被转换为线性随机变量,从而可以应用常见的线性回归方法。通过模拟和实际数据的例子表明了具有偏度和多模态的NNTS模型的有用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Regression models for circular data based on nonnegative trigonometric sums

The parameter space of nonnegative trigonometric sums (NNTS) models for circular data is the surface of a hypersphere; thus, constructing regression models for a circular-dependent variable using NNTS models can comprise fitting great (small) circles on the parameter hypersphere that can identify different regions (rotations) along the great (small) circle. We propose regression models for circular- (angular-) dependent random variables in which the original circular random variable, which is assumed to be distributed (marginally) as an NNTS model, is transformed into a linear random variable such that common methods for linear regression can be applied. The usefulness of NNTS models with skewness and multimodality is shown in examples with simulated and real data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Statistical Planning and Inference
Journal of Statistical Planning and Inference 数学-统计学与概率论
CiteScore
2.10
自引率
11.10%
发文量
78
审稿时长
3-6 weeks
期刊介绍: The Journal of Statistical Planning and Inference offers itself as a multifaceted and all-inclusive bridge between classical aspects of statistics and probability, and the emerging interdisciplinary aspects that have a potential of revolutionizing the subject. While we maintain our traditional strength in statistical inference, design, classical probability, and large sample methods, we also have a far more inclusive and broadened scope to keep up with the new problems that confront us as statisticians, mathematicians, and scientists. We publish high quality articles in all branches of statistics, probability, discrete mathematics, machine learning, and bioinformatics. We also especially welcome well written and up to date review articles on fundamental themes of statistics, probability, machine learning, and general biostatistics. Thoughtful letters to the editors, interesting problems in need of a solution, and short notes carrying an element of elegance or beauty are equally welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信