成功的a轮融资:对Crunchbase和LinkedIn数据的分析

Q1 Mathematics
Yiea-Funk Te , Michèle Wieland , Martin Frey , Asya Pyatigorskaya , Penny Schiffer , Helmut Grabner
{"title":"成功的a轮融资:对Crunchbase和LinkedIn数据的分析","authors":"Yiea-Funk Te ,&nbsp;Michèle Wieland ,&nbsp;Martin Frey ,&nbsp;Asya Pyatigorskaya ,&nbsp;Penny Schiffer ,&nbsp;Helmut Grabner","doi":"10.1016/j.jfds.2023.100099","DOIUrl":null,"url":null,"abstract":"<div><p>Startups are a key force driving economic development, and the success of these high-risk ventures can bring huge profits to venture capital firms. The ability to predict the success of startups is a major advantage for investors to outperform their competitors. In this study, we explore the potential of using publicly available LinkedIn profiles as an alternative and complementary data source to Crunchbase for predicting startup success. We provide a comprehensive review of the existing literature on the factors that influence startup success to create a large set of features for predictive modeling. We train two models for predicting startup success employing light gradient boosting that use LinkedIn data as a standalone and as a complementary data source, and compare them to baseline models based on Crunchbase data. We show that using LinkedIn as a complementary data source yields the best result with a mean area under the curve (AUC) value of 84%. We also provide a thorough analysis of what types of information contribute most to modeling startup success using the Shapley value method. Our models and analysis can be used to develop a decision support system to facilitate startup screening and the due diligence process for venture capital firms.</p></div>","PeriodicalId":36340,"journal":{"name":"Journal of Finance and Data Science","volume":"9 ","pages":"Article 100099"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Making it into a successful series a funding: An analysis of Crunchbase and LinkedIn data\",\"authors\":\"Yiea-Funk Te ,&nbsp;Michèle Wieland ,&nbsp;Martin Frey ,&nbsp;Asya Pyatigorskaya ,&nbsp;Penny Schiffer ,&nbsp;Helmut Grabner\",\"doi\":\"10.1016/j.jfds.2023.100099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Startups are a key force driving economic development, and the success of these high-risk ventures can bring huge profits to venture capital firms. The ability to predict the success of startups is a major advantage for investors to outperform their competitors. In this study, we explore the potential of using publicly available LinkedIn profiles as an alternative and complementary data source to Crunchbase for predicting startup success. We provide a comprehensive review of the existing literature on the factors that influence startup success to create a large set of features for predictive modeling. We train two models for predicting startup success employing light gradient boosting that use LinkedIn data as a standalone and as a complementary data source, and compare them to baseline models based on Crunchbase data. We show that using LinkedIn as a complementary data source yields the best result with a mean area under the curve (AUC) value of 84%. We also provide a thorough analysis of what types of information contribute most to modeling startup success using the Shapley value method. Our models and analysis can be used to develop a decision support system to facilitate startup screening and the due diligence process for venture capital firms.</p></div>\",\"PeriodicalId\":36340,\"journal\":{\"name\":\"Journal of Finance and Data Science\",\"volume\":\"9 \",\"pages\":\"Article 100099\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Finance and Data Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405918823000156\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Finance and Data Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405918823000156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

摘要

创业公司是推动经济发展的关键力量,这些高风险企业的成功可以为风险投资公司带来巨大的利润。预测创业公司成功的能力是投资者超越竞争对手的主要优势。在这项研究中,我们探索了使用公开的LinkedIn个人资料作为Crunchbase预测创业成功的替代和补充数据源的潜力。我们对影响创业成功因素的现有文献进行了全面的回顾,为预测建模创建了大量的特征。我们训练了两个模型来预测创业成功,它们使用LinkedIn数据作为独立和互补的数据源,并将它们与基于Crunchbase数据的基线模型进行比较。我们表明,使用LinkedIn作为补充数据源产生最佳结果,平均曲线下面积(AUC)值为84%。我们还使用Shapley值方法对哪些类型的信息对创业成功建模贡献最大进行了全面的分析。我们的模型和分析可用于开发决策支持系统,以促进风险投资公司对初创企业的筛选和尽职调查过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Making it into a successful series a funding: An analysis of Crunchbase and LinkedIn data

Startups are a key force driving economic development, and the success of these high-risk ventures can bring huge profits to venture capital firms. The ability to predict the success of startups is a major advantage for investors to outperform their competitors. In this study, we explore the potential of using publicly available LinkedIn profiles as an alternative and complementary data source to Crunchbase for predicting startup success. We provide a comprehensive review of the existing literature on the factors that influence startup success to create a large set of features for predictive modeling. We train two models for predicting startup success employing light gradient boosting that use LinkedIn data as a standalone and as a complementary data source, and compare them to baseline models based on Crunchbase data. We show that using LinkedIn as a complementary data source yields the best result with a mean area under the curve (AUC) value of 84%. We also provide a thorough analysis of what types of information contribute most to modeling startup success using the Shapley value method. Our models and analysis can be used to develop a decision support system to facilitate startup screening and the due diligence process for venture capital firms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Finance and Data Science
Journal of Finance and Data Science Mathematics-Statistics and Probability
CiteScore
3.90
自引率
0.00%
发文量
15
审稿时长
30 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信