{"title":"超声速横流结构下乙烯射流激光火花演化","authors":"Dan Fries, Devesh Ranjan, Suresh Menon","doi":"10.1007/s10494-022-00382-2","DOIUrl":null,"url":null,"abstract":"<div><p>Ignition and relighting in supersonic flows is an important challenge for the design of hypersonic propulsion systems. Supersonic compressible flows of interest exhibit much larger local variations in velocity, shear, and thermodynamic state than their incompressible counterparts. Thus, it is of interest to study the relationship between ignition kernel evolution, the initial spark location, and the kernel’s subsequent flow state history. We leverage the flexibility of a laser plasma ignition system to systematically explore a large set of spark locations on the symmetry plane of an ethylene jet in supersonic crossflow setup. CH* measurements are used to visualize chemically active regions and results are correlated with flow field properties derived from Mie-scattering data of the non-reacting flow field. Our study describes the laser plasma properties in detail and scrutinizes the effect of turbulent mixing and flow dilatation on ignition kernels. Finally, the results yield general guidelines for favorable ignition locations in the engineering design of chemically reactive compressible flows.</p></div>","PeriodicalId":559,"journal":{"name":"Flow, Turbulence and Combustion","volume":"110 2","pages":"417 - 440"},"PeriodicalIF":2.0000,"publicationDate":"2022-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Laser Spark Evolution in an Ethylene Jet in Supersonic Crossflow Configuration\",\"authors\":\"Dan Fries, Devesh Ranjan, Suresh Menon\",\"doi\":\"10.1007/s10494-022-00382-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Ignition and relighting in supersonic flows is an important challenge for the design of hypersonic propulsion systems. Supersonic compressible flows of interest exhibit much larger local variations in velocity, shear, and thermodynamic state than their incompressible counterparts. Thus, it is of interest to study the relationship between ignition kernel evolution, the initial spark location, and the kernel’s subsequent flow state history. We leverage the flexibility of a laser plasma ignition system to systematically explore a large set of spark locations on the symmetry plane of an ethylene jet in supersonic crossflow setup. CH* measurements are used to visualize chemically active regions and results are correlated with flow field properties derived from Mie-scattering data of the non-reacting flow field. Our study describes the laser plasma properties in detail and scrutinizes the effect of turbulent mixing and flow dilatation on ignition kernels. Finally, the results yield general guidelines for favorable ignition locations in the engineering design of chemically reactive compressible flows.</p></div>\",\"PeriodicalId\":559,\"journal\":{\"name\":\"Flow, Turbulence and Combustion\",\"volume\":\"110 2\",\"pages\":\"417 - 440\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2022-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Flow, Turbulence and Combustion\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10494-022-00382-2\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Flow, Turbulence and Combustion","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10494-022-00382-2","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
Laser Spark Evolution in an Ethylene Jet in Supersonic Crossflow Configuration
Ignition and relighting in supersonic flows is an important challenge for the design of hypersonic propulsion systems. Supersonic compressible flows of interest exhibit much larger local variations in velocity, shear, and thermodynamic state than their incompressible counterparts. Thus, it is of interest to study the relationship between ignition kernel evolution, the initial spark location, and the kernel’s subsequent flow state history. We leverage the flexibility of a laser plasma ignition system to systematically explore a large set of spark locations on the symmetry plane of an ethylene jet in supersonic crossflow setup. CH* measurements are used to visualize chemically active regions and results are correlated with flow field properties derived from Mie-scattering data of the non-reacting flow field. Our study describes the laser plasma properties in detail and scrutinizes the effect of turbulent mixing and flow dilatation on ignition kernels. Finally, the results yield general guidelines for favorable ignition locations in the engineering design of chemically reactive compressible flows.
期刊介绍:
Flow, Turbulence and Combustion provides a global forum for the publication of original and innovative research results that contribute to the solution of fundamental and applied problems encountered in single-phase, multi-phase and reacting flows, in both idealized and real systems. The scope of coverage encompasses topics in fluid dynamics, scalar transport, multi-physics interactions and flow control. From time to time the journal publishes Special or Theme Issues featuring invited articles.
Contributions may report research that falls within the broad spectrum of analytical, computational and experimental methods. This includes research conducted in academia, industry and a variety of environmental and geophysical sectors. Turbulence, transition and associated phenomena are expected to play a significant role in the majority of studies reported, although non-turbulent flows, typical of those in micro-devices, would be regarded as falling within the scope covered. The emphasis is on originality, timeliness, quality and thematic fit, as exemplified by the title of the journal and the qualifications described above. Relevance to real-world problems and industrial applications are regarded as strengths.