Liping Guo , Hongze Wang , Hanjie Liu , Yuze Huang , Qianglong Wei , Chu Lun Alex Leung , Yi Wu , Haowei Wang
{"title":"激光粉末床熔铝过程中锁孔致孔率的认识及消除策略","authors":"Liping Guo , Hongze Wang , Hanjie Liu , Yuze Huang , Qianglong Wei , Chu Lun Alex Leung , Yi Wu , Haowei Wang","doi":"10.1016/j.ijmachtools.2022.103977","DOIUrl":null,"url":null,"abstract":"<div><p>Laser powder bed fusion (LPBF) technology has the potential to revolutionize the fabrication of complex metal components in the aerospace, medical, and automotive industries. However, keyhole pores may be induced during the rapid laser-metal interaction (∼10<sup>−5</sup> s) of the LPBF. These inner porosities can potentially affect the mechanical properties of the fabricated parts. Here, based on the experimentally observed keyhole-penetration pore (KP-pore) led by the keyhole splitting of the molten pool in LPBF, a multi-physics finite volume model was established to reveal this mechanism, where keyhole pores were formed under the direct contact of keyhole and solid metal substrate, which is different from the previously reported gas–liquid interaction. The formation mechanisms of the KP-pore, rear-front pore (RF-pore), and rear pore (R-pore) could be attributed to different keyhole fluctuation modes. The effects of the powder on the characteristics of the keyhole, molten pool, and pore formation were explored. The increased pore counts and decreased size were owing to the powder-promoting keyhole and molten pool oscillation. In addition, a relationship map between the input energy density and pore number was built <em>via</em> a high-throughput simulation, providing a strategy to reduce or remove the pores in laser powder bed fusion.</p></div>","PeriodicalId":14011,"journal":{"name":"International Journal of Machine Tools & Manufacture","volume":"184 ","pages":"Article 103977"},"PeriodicalIF":14.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Understanding keyhole induced-porosities in laser powder bed fusion of aluminum and elimination strategy\",\"authors\":\"Liping Guo , Hongze Wang , Hanjie Liu , Yuze Huang , Qianglong Wei , Chu Lun Alex Leung , Yi Wu , Haowei Wang\",\"doi\":\"10.1016/j.ijmachtools.2022.103977\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Laser powder bed fusion (LPBF) technology has the potential to revolutionize the fabrication of complex metal components in the aerospace, medical, and automotive industries. However, keyhole pores may be induced during the rapid laser-metal interaction (∼10<sup>−5</sup> s) of the LPBF. These inner porosities can potentially affect the mechanical properties of the fabricated parts. Here, based on the experimentally observed keyhole-penetration pore (KP-pore) led by the keyhole splitting of the molten pool in LPBF, a multi-physics finite volume model was established to reveal this mechanism, where keyhole pores were formed under the direct contact of keyhole and solid metal substrate, which is different from the previously reported gas–liquid interaction. The formation mechanisms of the KP-pore, rear-front pore (RF-pore), and rear pore (R-pore) could be attributed to different keyhole fluctuation modes. The effects of the powder on the characteristics of the keyhole, molten pool, and pore formation were explored. The increased pore counts and decreased size were owing to the powder-promoting keyhole and molten pool oscillation. In addition, a relationship map between the input energy density and pore number was built <em>via</em> a high-throughput simulation, providing a strategy to reduce or remove the pores in laser powder bed fusion.</p></div>\",\"PeriodicalId\":14011,\"journal\":{\"name\":\"International Journal of Machine Tools & Manufacture\",\"volume\":\"184 \",\"pages\":\"Article 103977\"},\"PeriodicalIF\":14.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Machine Tools & Manufacture\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0890695522001286\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Machine Tools & Manufacture","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0890695522001286","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Understanding keyhole induced-porosities in laser powder bed fusion of aluminum and elimination strategy
Laser powder bed fusion (LPBF) technology has the potential to revolutionize the fabrication of complex metal components in the aerospace, medical, and automotive industries. However, keyhole pores may be induced during the rapid laser-metal interaction (∼10−5 s) of the LPBF. These inner porosities can potentially affect the mechanical properties of the fabricated parts. Here, based on the experimentally observed keyhole-penetration pore (KP-pore) led by the keyhole splitting of the molten pool in LPBF, a multi-physics finite volume model was established to reveal this mechanism, where keyhole pores were formed under the direct contact of keyhole and solid metal substrate, which is different from the previously reported gas–liquid interaction. The formation mechanisms of the KP-pore, rear-front pore (RF-pore), and rear pore (R-pore) could be attributed to different keyhole fluctuation modes. The effects of the powder on the characteristics of the keyhole, molten pool, and pore formation were explored. The increased pore counts and decreased size were owing to the powder-promoting keyhole and molten pool oscillation. In addition, a relationship map between the input energy density and pore number was built via a high-throughput simulation, providing a strategy to reduce or remove the pores in laser powder bed fusion.
期刊介绍:
The International Journal of Machine Tools and Manufacture is dedicated to advancing scientific comprehension of the fundamental mechanics involved in processes and machines utilized in the manufacturing of engineering components. While the primary focus is on metals, the journal also explores applications in composites, ceramics, and other structural or functional materials. The coverage includes a diverse range of topics:
- Essential mechanics of processes involving material removal, accretion, and deformation, encompassing solid, semi-solid, or particulate forms.
- Significant scientific advancements in existing or new processes and machines.
- In-depth characterization of workpiece materials (structure/surfaces) through advanced techniques (e.g., SEM, EDS, TEM, EBSD, AES, Raman spectroscopy) to unveil new phenomenological aspects governing manufacturing processes.
- Tool design, utilization, and comprehensive studies of failure mechanisms.
- Innovative concepts of machine tools, fixtures, and tool holders supported by modeling and demonstrations relevant to manufacturing processes within the journal's scope.
- Novel scientific contributions exploring interactions between the machine tool, control system, software design, and processes.
- Studies elucidating specific mechanisms governing niche processes (e.g., ultra-high precision, nano/atomic level manufacturing with either mechanical or non-mechanical "tools").
- Innovative approaches, underpinned by thorough scientific analysis, addressing emerging or breakthrough processes (e.g., bio-inspired manufacturing) and/or applications (e.g., ultra-high precision optics).