快速刀具伺服控制剪切增厚微抛光

IF 14 1区 工程技术 Q1 ENGINEERING, MANUFACTURING
Zi-Hui Zhu , Peng Huang , Suet To , Li-Min Zhu , Zhiwei Zhu
{"title":"快速刀具伺服控制剪切增厚微抛光","authors":"Zi-Hui Zhu ,&nbsp;Peng Huang ,&nbsp;Suet To ,&nbsp;Li-Min Zhu ,&nbsp;Zhiwei Zhu","doi":"10.1016/j.ijmachtools.2022.103968","DOIUrl":null,"url":null,"abstract":"<div><p>Polishing-based post-processing is essential for removing the undesired surface diffraction on diamond-turned microstructured surfaces that is enhanced by periodic tool marks. To overcome challenges in existing micropolishing methods, a fast-tool-servo-controlled shear-thickening micropolishing method was proposed for the non-contact and controllable polishing of microstructured surfaces. The operating kinematics and material removal mechanism are modeled analytically and investigated experimentally. The comprehensive principal stress in front of the rake face of the tool is found to mainly contribute to the material removal. The fast tool servo can tune the principal stress and the viscosity of the slurry by flexibly adjusting the gap width between the surface and the tool edge. Thus, the material removal can be controlled at any operating position. Meanwhile, although the material removal rate is nonlinearly related to the rotation radius and gap width, the constraint between these two factors is linear for achieving a fixed material removal rate. Finally, the feasibility of the proposed micropolishing method is demonstrated by successfully polishing rotationally symmetric and asymmetric microstructured surfaces to achieve improved surface smoothness and conformal surface shapes.</p></div>","PeriodicalId":14011,"journal":{"name":"International Journal of Machine Tools & Manufacture","volume":"184 ","pages":"Article 103968"},"PeriodicalIF":14.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Fast-tool-servo-controlled shear-thickening micropolishing\",\"authors\":\"Zi-Hui Zhu ,&nbsp;Peng Huang ,&nbsp;Suet To ,&nbsp;Li-Min Zhu ,&nbsp;Zhiwei Zhu\",\"doi\":\"10.1016/j.ijmachtools.2022.103968\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Polishing-based post-processing is essential for removing the undesired surface diffraction on diamond-turned microstructured surfaces that is enhanced by periodic tool marks. To overcome challenges in existing micropolishing methods, a fast-tool-servo-controlled shear-thickening micropolishing method was proposed for the non-contact and controllable polishing of microstructured surfaces. The operating kinematics and material removal mechanism are modeled analytically and investigated experimentally. The comprehensive principal stress in front of the rake face of the tool is found to mainly contribute to the material removal. The fast tool servo can tune the principal stress and the viscosity of the slurry by flexibly adjusting the gap width between the surface and the tool edge. Thus, the material removal can be controlled at any operating position. Meanwhile, although the material removal rate is nonlinearly related to the rotation radius and gap width, the constraint between these two factors is linear for achieving a fixed material removal rate. Finally, the feasibility of the proposed micropolishing method is demonstrated by successfully polishing rotationally symmetric and asymmetric microstructured surfaces to achieve improved surface smoothness and conformal surface shapes.</p></div>\",\"PeriodicalId\":14011,\"journal\":{\"name\":\"International Journal of Machine Tools & Manufacture\",\"volume\":\"184 \",\"pages\":\"Article 103968\"},\"PeriodicalIF\":14.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Machine Tools & Manufacture\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0890695522001195\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Machine Tools & Manufacture","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0890695522001195","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 5

摘要

基于抛光的后处理对于消除金刚石车削微结构表面上不希望的表面衍射是必不可少的,这种表面衍射是由周期性工具标记增强的。针对现有微抛光方法存在的问题,提出了一种快速刀具伺服控制剪切增厚微抛光方法,用于微结构表面的非接触可控抛光。对其工作运动学和材料去除机理进行了分析和实验研究。刀具前刀面的综合主应力对材料的去除起主要作用。快速刀具伺服系统通过灵活调节刀具表面与刃口间隙的宽度来调节浆液的主应力和黏度。因此,材料的去除可以控制在任何操作位置。同时,虽然材料去除率与旋转半径和间隙宽度呈非线性关系,但为了实现固定的材料去除率,这两个因素之间的约束是线性的。最后,通过成功抛光旋转对称和非对称的微结构表面,证明了所提出的微抛光方法的可行性,从而提高了表面的光滑度和保形表面形状。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Fast-tool-servo-controlled shear-thickening micropolishing

Fast-tool-servo-controlled shear-thickening micropolishing

Polishing-based post-processing is essential for removing the undesired surface diffraction on diamond-turned microstructured surfaces that is enhanced by periodic tool marks. To overcome challenges in existing micropolishing methods, a fast-tool-servo-controlled shear-thickening micropolishing method was proposed for the non-contact and controllable polishing of microstructured surfaces. The operating kinematics and material removal mechanism are modeled analytically and investigated experimentally. The comprehensive principal stress in front of the rake face of the tool is found to mainly contribute to the material removal. The fast tool servo can tune the principal stress and the viscosity of the slurry by flexibly adjusting the gap width between the surface and the tool edge. Thus, the material removal can be controlled at any operating position. Meanwhile, although the material removal rate is nonlinearly related to the rotation radius and gap width, the constraint between these two factors is linear for achieving a fixed material removal rate. Finally, the feasibility of the proposed micropolishing method is demonstrated by successfully polishing rotationally symmetric and asymmetric microstructured surfaces to achieve improved surface smoothness and conformal surface shapes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
25.70
自引率
10.00%
发文量
66
审稿时长
18 days
期刊介绍: The International Journal of Machine Tools and Manufacture is dedicated to advancing scientific comprehension of the fundamental mechanics involved in processes and machines utilized in the manufacturing of engineering components. While the primary focus is on metals, the journal also explores applications in composites, ceramics, and other structural or functional materials. The coverage includes a diverse range of topics: - Essential mechanics of processes involving material removal, accretion, and deformation, encompassing solid, semi-solid, or particulate forms. - Significant scientific advancements in existing or new processes and machines. - In-depth characterization of workpiece materials (structure/surfaces) through advanced techniques (e.g., SEM, EDS, TEM, EBSD, AES, Raman spectroscopy) to unveil new phenomenological aspects governing manufacturing processes. - Tool design, utilization, and comprehensive studies of failure mechanisms. - Innovative concepts of machine tools, fixtures, and tool holders supported by modeling and demonstrations relevant to manufacturing processes within the journal's scope. - Novel scientific contributions exploring interactions between the machine tool, control system, software design, and processes. - Studies elucidating specific mechanisms governing niche processes (e.g., ultra-high precision, nano/atomic level manufacturing with either mechanical or non-mechanical "tools"). - Innovative approaches, underpinned by thorough scientific analysis, addressing emerging or breakthrough processes (e.g., bio-inspired manufacturing) and/or applications (e.g., ultra-high precision optics).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信