基于变压器的感知对比水下图像增强网络

IF 3.4 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Na Cheng, Zhixuan Sun, Xuanbing Zhu, Hongyu Wang
{"title":"基于变压器的感知对比水下图像增强网络","authors":"Na Cheng,&nbsp;Zhixuan Sun,&nbsp;Xuanbing Zhu,&nbsp;Hongyu Wang","doi":"10.1016/j.image.2023.117032","DOIUrl":null,"url":null,"abstract":"<div><p>Vision-based underwater image enhancement methods have received much attention for application in the fields of marine engineering and marine science. The absorption and scattering of light in real underwater scenes leads to severe information degradation in the acquired underwater images, thus limiting further development of underwater tasks. To solve these problems, a novel transformer-based perceptual contrastive network for underwater image enhancement methods (TPC-UIE) is proposed to achieve visually friendly and high-quality images, where contrastive learning<span> is applied to the underwater image enhancement (UIE) task for the first time. Specifically, to address the limitations of the pure convolution-based network, we embed the transformer into the UIE network to improve its ability to capture global dependencies. Then, the limits of the transformer are then taken into account as convolution is reintroduced to better capture local attention. At the same time, the dual-attention module strengthens the network’s focus on the spatial and color channels that are more severely attenuated. Finally, a perceptual contrastive regularization method is proposed, where a multi-loss function made up of reconstruction loss, perceptual loss, and contrastive loss jointly optimizes the model to simultaneously ensure texture detail, contrast, and color consistency. Experimental results on several existing datasets show that the TPC-UIE obtains excellent performance in both subjective and objective evaluations compared to other methods. In addition, the visual quality of the underwater images is significantly improved by the enhancement of the method and effectively facilitates further development of the underwater task.</span></p></div>","PeriodicalId":49521,"journal":{"name":"Signal Processing-Image Communication","volume":"118 ","pages":"Article 117032"},"PeriodicalIF":3.4000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A transformer-based network for perceptual contrastive underwater image enhancement\",\"authors\":\"Na Cheng,&nbsp;Zhixuan Sun,&nbsp;Xuanbing Zhu,&nbsp;Hongyu Wang\",\"doi\":\"10.1016/j.image.2023.117032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Vision-based underwater image enhancement methods have received much attention for application in the fields of marine engineering and marine science. The absorption and scattering of light in real underwater scenes leads to severe information degradation in the acquired underwater images, thus limiting further development of underwater tasks. To solve these problems, a novel transformer-based perceptual contrastive network for underwater image enhancement methods (TPC-UIE) is proposed to achieve visually friendly and high-quality images, where contrastive learning<span> is applied to the underwater image enhancement (UIE) task for the first time. Specifically, to address the limitations of the pure convolution-based network, we embed the transformer into the UIE network to improve its ability to capture global dependencies. Then, the limits of the transformer are then taken into account as convolution is reintroduced to better capture local attention. At the same time, the dual-attention module strengthens the network’s focus on the spatial and color channels that are more severely attenuated. Finally, a perceptual contrastive regularization method is proposed, where a multi-loss function made up of reconstruction loss, perceptual loss, and contrastive loss jointly optimizes the model to simultaneously ensure texture detail, contrast, and color consistency. Experimental results on several existing datasets show that the TPC-UIE obtains excellent performance in both subjective and objective evaluations compared to other methods. In addition, the visual quality of the underwater images is significantly improved by the enhancement of the method and effectively facilitates further development of the underwater task.</span></p></div>\",\"PeriodicalId\":49521,\"journal\":{\"name\":\"Signal Processing-Image Communication\",\"volume\":\"118 \",\"pages\":\"Article 117032\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Signal Processing-Image Communication\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0923596523001145\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing-Image Communication","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0923596523001145","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

基于视觉的水下图像增强方法在海洋工程和海洋科学领域得到了广泛的应用。真实水下场景中光线的吸收和散射导致获取的水下图像信息严重退化,限制了水下任务的进一步开展。为了解决这些问题,提出了一种新的基于变压器的水下图像增强方法感知对比网络(TPC-UIE),并首次将对比学习应用于水下图像增强(UIE)任务中,以获得视觉友好的高质量图像。具体来说,为了解决纯基于卷积的网络的局限性,我们将转换器嵌入到UIE网络中,以提高其捕获全局依赖关系的能力。然后,当重新引入卷积以更好地捕获局部注意力时,考虑到变压器的限制。同时,双注意模块加强了网络对衰减较严重的空间和颜色通道的关注。最后,提出了一种感知对比正则化方法,由重建损失、感知损失和对比损失组成的多损失函数共同优化模型,同时保证纹理细节、对比度和颜色一致性。在多个已有数据集上的实验结果表明,与其他方法相比,TPC-UIE在主观和客观评价方面都取得了优异的成绩。此外,该方法的增强显著提高了水下图像的视觉质量,有效地促进了水下任务的进一步开展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A transformer-based network for perceptual contrastive underwater image enhancement

Vision-based underwater image enhancement methods have received much attention for application in the fields of marine engineering and marine science. The absorption and scattering of light in real underwater scenes leads to severe information degradation in the acquired underwater images, thus limiting further development of underwater tasks. To solve these problems, a novel transformer-based perceptual contrastive network for underwater image enhancement methods (TPC-UIE) is proposed to achieve visually friendly and high-quality images, where contrastive learning is applied to the underwater image enhancement (UIE) task for the first time. Specifically, to address the limitations of the pure convolution-based network, we embed the transformer into the UIE network to improve its ability to capture global dependencies. Then, the limits of the transformer are then taken into account as convolution is reintroduced to better capture local attention. At the same time, the dual-attention module strengthens the network’s focus on the spatial and color channels that are more severely attenuated. Finally, a perceptual contrastive regularization method is proposed, where a multi-loss function made up of reconstruction loss, perceptual loss, and contrastive loss jointly optimizes the model to simultaneously ensure texture detail, contrast, and color consistency. Experimental results on several existing datasets show that the TPC-UIE obtains excellent performance in both subjective and objective evaluations compared to other methods. In addition, the visual quality of the underwater images is significantly improved by the enhancement of the method and effectively facilitates further development of the underwater task.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Signal Processing-Image Communication
Signal Processing-Image Communication 工程技术-工程:电子与电气
CiteScore
8.40
自引率
2.90%
发文量
138
审稿时长
5.2 months
期刊介绍: Signal Processing: Image Communication is an international journal for the development of the theory and practice of image communication. Its primary objectives are the following: To present a forum for the advancement of theory and practice of image communication. To stimulate cross-fertilization between areas similar in nature which have traditionally been separated, for example, various aspects of visual communications and information systems. To contribute to a rapid information exchange between the industrial and academic environments. The editorial policy and the technical content of the journal are the responsibility of the Editor-in-Chief, the Area Editors and the Advisory Editors. The Journal is self-supporting from subscription income and contains a minimum amount of advertisements. Advertisements are subject to the prior approval of the Editor-in-Chief. The journal welcomes contributions from every country in the world. Signal Processing: Image Communication publishes articles relating to aspects of the design, implementation and use of image communication systems. The journal features original research work, tutorial and review articles, and accounts of practical developments. Subjects of interest include image/video coding, 3D video representations and compression, 3D graphics and animation compression, HDTV and 3DTV systems, video adaptation, video over IP, peer-to-peer video networking, interactive visual communication, multi-user video conferencing, wireless video broadcasting and communication, visual surveillance, 2D and 3D image/video quality measures, pre/post processing, video restoration and super-resolution, multi-camera video analysis, motion analysis, content-based image/video indexing and retrieval, face and gesture processing, video synthesis, 2D and 3D image/video acquisition and display technologies, architectures for image/video processing and communication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信