基于真三轴物理模拟的多簇裂缝平衡起裂与扩展实验研究

Xiangwei Kong , Hao Huang , Guangyu Xie , Rentian Yan , Hongxing Xu , Song Li
{"title":"基于真三轴物理模拟的多簇裂缝平衡起裂与扩展实验研究","authors":"Xiangwei Kong ,&nbsp;Hao Huang ,&nbsp;Guangyu Xie ,&nbsp;Rentian Yan ,&nbsp;Hongxing Xu ,&nbsp;Song Li","doi":"10.1016/j.jnggs.2023.08.003","DOIUrl":null,"url":null,"abstract":"<div><p>In the context of tight sandstone reservoirs in the Ordos Basin characterized by compact and heterogeneous rock formations, conventional fracturing techniques yield monolithic fracture shapes, rendering 3D reservoir reconstruction unattainable. This study investigates the principles governing balanced initiation and propagation of fractures in multi-cluster fracturing within unconventional fracturing technology. Employing a large-scale true triaxial simulation experiment system, we utilize the dimensional analysis method (π theorem) to design a physical simulation experiment similarity criterion. Through various experimental adjustments involving proportioning, curing, and mechanical testing, we generate an artificially cured rock mass with mechanical parameters akin to the target layer. The rock mass is maintained at a size of 30 cm × 30 cm × 30 cm. Systematic physical simulation experiments on unconventional volume fracturing are carried out using the 30 cm-sized dense sandstone outcrop rock mass. Taking the conventional fracturing technology as a reference and manipulating experimental conditions and design parameters, we simulate the non-equilibrium initiation and extension behaviors of fracturing fractures under five unconventional volume fracturing technologies, namely hydraulic pulse pretreatment, temporary plugging between clusters, flow-limiting method, cyclic loading and unloading, and pulse intermittent fracturing. Through this, we elucidate the non-equilibrium initiation and extension laws governing multi-cluster fractures. Comparative analysis with conventional fracturing, known for inducing stress interference on fractures and inhibiting their expansion, revels that the five unconventional volume fracturing techniques mitigate stress interference in multi-cluster fracturing. This promotes uniform fracture initiation and expansion, facilitating the creation of complex fractures and larger reconstructed volumes. Among these techniques, inter-cluster block fracturing stands out for its exceptional ability to generate complex fracture networks. The research culminates in the development and refinement of a balanced fracture and extension control technique tailored for multiple cluster fractures in bulk fracturing. This technique significantly contributes to enhancing the degree of 3D reconstruction achievable in unconventional tight oil and gas reservoirs.</p></div>","PeriodicalId":100808,"journal":{"name":"Journal of Natural Gas Geoscience","volume":"8 5","pages":"Pages 349-362"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Experimental study on equilibrium initiation and extension of multiple clusters of fractures based on true triaxial physical simulation\",\"authors\":\"Xiangwei Kong ,&nbsp;Hao Huang ,&nbsp;Guangyu Xie ,&nbsp;Rentian Yan ,&nbsp;Hongxing Xu ,&nbsp;Song Li\",\"doi\":\"10.1016/j.jnggs.2023.08.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the context of tight sandstone reservoirs in the Ordos Basin characterized by compact and heterogeneous rock formations, conventional fracturing techniques yield monolithic fracture shapes, rendering 3D reservoir reconstruction unattainable. This study investigates the principles governing balanced initiation and propagation of fractures in multi-cluster fracturing within unconventional fracturing technology. Employing a large-scale true triaxial simulation experiment system, we utilize the dimensional analysis method (π theorem) to design a physical simulation experiment similarity criterion. Through various experimental adjustments involving proportioning, curing, and mechanical testing, we generate an artificially cured rock mass with mechanical parameters akin to the target layer. The rock mass is maintained at a size of 30 cm × 30 cm × 30 cm. Systematic physical simulation experiments on unconventional volume fracturing are carried out using the 30 cm-sized dense sandstone outcrop rock mass. Taking the conventional fracturing technology as a reference and manipulating experimental conditions and design parameters, we simulate the non-equilibrium initiation and extension behaviors of fracturing fractures under five unconventional volume fracturing technologies, namely hydraulic pulse pretreatment, temporary plugging between clusters, flow-limiting method, cyclic loading and unloading, and pulse intermittent fracturing. Through this, we elucidate the non-equilibrium initiation and extension laws governing multi-cluster fractures. Comparative analysis with conventional fracturing, known for inducing stress interference on fractures and inhibiting their expansion, revels that the five unconventional volume fracturing techniques mitigate stress interference in multi-cluster fracturing. This promotes uniform fracture initiation and expansion, facilitating the creation of complex fractures and larger reconstructed volumes. Among these techniques, inter-cluster block fracturing stands out for its exceptional ability to generate complex fracture networks. The research culminates in the development and refinement of a balanced fracture and extension control technique tailored for multiple cluster fractures in bulk fracturing. This technique significantly contributes to enhancing the degree of 3D reconstruction achievable in unconventional tight oil and gas reservoirs.</p></div>\",\"PeriodicalId\":100808,\"journal\":{\"name\":\"Journal of Natural Gas Geoscience\",\"volume\":\"8 5\",\"pages\":\"Pages 349-362\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Natural Gas Geoscience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468256X23000512\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Natural Gas Geoscience","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468256X23000512","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

鄂尔多斯盆地致密砂岩储层岩性致密、非均质,常规压裂技术产生的裂缝形态单一,无法实现储层三维重建。本文研究了非常规压裂技术中多簇压裂裂缝平衡起裂和扩展的原理。利用大型真三轴模拟实验系统,利用量纲分析法(π定理)设计了物理模拟实验相似度准则。通过各种实验调整,包括比例、养护和力学测试,我们生成了一个人工养护的岩体,其力学参数与目标层相似。岩体保持在30cm × 30cm × 30cm的尺寸。利用30 cm大小的致密砂岩露头岩体进行了非常规体积压裂的系统物理模拟实验。以常规压裂技术为参照,操纵实验条件和设计参数,模拟了水力脉冲预处理、簇间临时封堵、限流法、循环加载卸载、脉冲间歇压裂5种非常规体积压裂技术下压裂裂缝的非平衡起裂和扩展行为。由此阐明了多簇裂缝的非平衡起裂和扩展规律。常规压裂会对裂缝产生应力干扰并抑制裂缝扩展,与常规压裂相比,这五种非常规体积压裂技术可以减轻多簇压裂中的应力干扰。这促进了裂缝的均匀起裂和扩展,促进了复杂裂缝的形成和更大的重建体积。在这些技术中,簇间块压裂以其产生复杂裂缝网络的特殊能力而脱颖而出。该研究的最终成果是开发和完善了针对大块压裂中多簇裂缝的平衡裂缝和延伸控制技术。该技术显著提高了非常规致密油气储层的三维重建程度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental study on equilibrium initiation and extension of multiple clusters of fractures based on true triaxial physical simulation

In the context of tight sandstone reservoirs in the Ordos Basin characterized by compact and heterogeneous rock formations, conventional fracturing techniques yield monolithic fracture shapes, rendering 3D reservoir reconstruction unattainable. This study investigates the principles governing balanced initiation and propagation of fractures in multi-cluster fracturing within unconventional fracturing technology. Employing a large-scale true triaxial simulation experiment system, we utilize the dimensional analysis method (π theorem) to design a physical simulation experiment similarity criterion. Through various experimental adjustments involving proportioning, curing, and mechanical testing, we generate an artificially cured rock mass with mechanical parameters akin to the target layer. The rock mass is maintained at a size of 30 cm × 30 cm × 30 cm. Systematic physical simulation experiments on unconventional volume fracturing are carried out using the 30 cm-sized dense sandstone outcrop rock mass. Taking the conventional fracturing technology as a reference and manipulating experimental conditions and design parameters, we simulate the non-equilibrium initiation and extension behaviors of fracturing fractures under five unconventional volume fracturing technologies, namely hydraulic pulse pretreatment, temporary plugging between clusters, flow-limiting method, cyclic loading and unloading, and pulse intermittent fracturing. Through this, we elucidate the non-equilibrium initiation and extension laws governing multi-cluster fractures. Comparative analysis with conventional fracturing, known for inducing stress interference on fractures and inhibiting their expansion, revels that the five unconventional volume fracturing techniques mitigate stress interference in multi-cluster fracturing. This promotes uniform fracture initiation and expansion, facilitating the creation of complex fractures and larger reconstructed volumes. Among these techniques, inter-cluster block fracturing stands out for its exceptional ability to generate complex fracture networks. The research culminates in the development and refinement of a balanced fracture and extension control technique tailored for multiple cluster fractures in bulk fracturing. This technique significantly contributes to enhancing the degree of 3D reconstruction achievable in unconventional tight oil and gas reservoirs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信