Mohammed Awwalu Usman, Olumide Kayode Fagoroye, Toluwalase Olufunmilayo Ajayi
{"title":"以氯化胆碱基深共晶溶剂和乙醇为萃取剂的混合溶剂用于正己烷中苯的液-液萃取的评估:迈向绿色和可持续范例","authors":"Mohammed Awwalu Usman, Olumide Kayode Fagoroye, Toluwalase Olufunmilayo Ajayi","doi":"10.1007/s13203-021-00282-y","DOIUrl":null,"url":null,"abstract":"<div><p>Deep eutectic solvents (DESs) have high viscosities, but known to be mitigated by addition of suitable co-solvent. The effect of such co-solvent on the extraction efficiency of the hybrid solvent is hardly known. This study examined the effect of ethanol on three choline chloride-based DESs (glyceline, reline, and ethaline) by mixing each in turn with ethanol in various volume proportions. The hybrid solvents were evaluated for the extraction of benzene from <i>n</i>-hexane. Pseudo-ternary liquid–liquid equilibrium data were obtained using the refractive index method at 303 K and 1 atm for the systems, <i>n</i>-hexane (1) + benzene (2) + hybrid solvent (glyceline/ethanol, ethaline/ethanol, reline/ethanol) (3), and used to evaluate distribution coefficient (<i>D</i>) and selectivity (<i>S</i>). Furthermore, the physicochemical properties of the hybrid solvents were also determined. The results indicate increase in selectivity with increasing ethanol addition up to 50% and decrease with further addition. All hybrid solvents with 50% ethanol outperform sulfolane and are suitable replacement for same as green and sustainable extractant for aromatics from aliphatics. The glyceline + 50% ethanol emerged the overall best with 49.73% elevation in selectivity and 41.15% reduction in viscosity relative to the neat glyceline. The finding of this study is expected to fillip the drive for paradigm shift in petrochemical industries.</p></div>","PeriodicalId":472,"journal":{"name":"Applied Petrochemical Research","volume":"11 3","pages":"335 - 351"},"PeriodicalIF":0.1250,"publicationDate":"2021-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13203-021-00282-y.pdf","citationCount":"1","resultStr":"{\"title\":\"Evaluation of hybrid solvents featuring choline chloride-based deep eutectic solvents and ethanol as extractants for the liquid–liquid extraction of benzene from n-hexane: towards a green and sustainable paradigm\",\"authors\":\"Mohammed Awwalu Usman, Olumide Kayode Fagoroye, Toluwalase Olufunmilayo Ajayi\",\"doi\":\"10.1007/s13203-021-00282-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Deep eutectic solvents (DESs) have high viscosities, but known to be mitigated by addition of suitable co-solvent. The effect of such co-solvent on the extraction efficiency of the hybrid solvent is hardly known. This study examined the effect of ethanol on three choline chloride-based DESs (glyceline, reline, and ethaline) by mixing each in turn with ethanol in various volume proportions. The hybrid solvents were evaluated for the extraction of benzene from <i>n</i>-hexane. Pseudo-ternary liquid–liquid equilibrium data were obtained using the refractive index method at 303 K and 1 atm for the systems, <i>n</i>-hexane (1) + benzene (2) + hybrid solvent (glyceline/ethanol, ethaline/ethanol, reline/ethanol) (3), and used to evaluate distribution coefficient (<i>D</i>) and selectivity (<i>S</i>). Furthermore, the physicochemical properties of the hybrid solvents were also determined. The results indicate increase in selectivity with increasing ethanol addition up to 50% and decrease with further addition. All hybrid solvents with 50% ethanol outperform sulfolane and are suitable replacement for same as green and sustainable extractant for aromatics from aliphatics. The glyceline + 50% ethanol emerged the overall best with 49.73% elevation in selectivity and 41.15% reduction in viscosity relative to the neat glyceline. The finding of this study is expected to fillip the drive for paradigm shift in petrochemical industries.</p></div>\",\"PeriodicalId\":472,\"journal\":{\"name\":\"Applied Petrochemical Research\",\"volume\":\"11 3\",\"pages\":\"335 - 351\"},\"PeriodicalIF\":0.1250,\"publicationDate\":\"2021-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s13203-021-00282-y.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Petrochemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13203-021-00282-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Petrochemical Research","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s13203-021-00282-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Evaluation of hybrid solvents featuring choline chloride-based deep eutectic solvents and ethanol as extractants for the liquid–liquid extraction of benzene from n-hexane: towards a green and sustainable paradigm
Deep eutectic solvents (DESs) have high viscosities, but known to be mitigated by addition of suitable co-solvent. The effect of such co-solvent on the extraction efficiency of the hybrid solvent is hardly known. This study examined the effect of ethanol on three choline chloride-based DESs (glyceline, reline, and ethaline) by mixing each in turn with ethanol in various volume proportions. The hybrid solvents were evaluated for the extraction of benzene from n-hexane. Pseudo-ternary liquid–liquid equilibrium data were obtained using the refractive index method at 303 K and 1 atm for the systems, n-hexane (1) + benzene (2) + hybrid solvent (glyceline/ethanol, ethaline/ethanol, reline/ethanol) (3), and used to evaluate distribution coefficient (D) and selectivity (S). Furthermore, the physicochemical properties of the hybrid solvents were also determined. The results indicate increase in selectivity with increasing ethanol addition up to 50% and decrease with further addition. All hybrid solvents with 50% ethanol outperform sulfolane and are suitable replacement for same as green and sustainable extractant for aromatics from aliphatics. The glyceline + 50% ethanol emerged the overall best with 49.73% elevation in selectivity and 41.15% reduction in viscosity relative to the neat glyceline. The finding of this study is expected to fillip the drive for paradigm shift in petrochemical industries.
期刊介绍:
Applied Petrochemical Research is a quarterly Open Access journal supported by King Abdulaziz City for Science and Technology and all the manuscripts are single-blind peer-reviewed for scientific quality and acceptance. The article-processing charge (APC) for all authors is covered by KACST. Publication of original applied research on all aspects of the petrochemical industry focusing on new and smart technologies that allow the production of value-added end products in a cost-effective way. Topics of interest include: • Review of Petrochemical Processes • Reaction Engineering • Design • Catalysis • Pilot Plant and Production Studies • Synthesis As Applied to any of the following aspects of Petrochemical Research: -Feedstock Petrochemicals: Ethylene Production, Propylene Production, Butylene Production, Aromatics Production (Benzene, Toluene, Xylene etc...), Oxygenate Production (Methanol, Ethanol, Propanol etc…), Paraffins and Waxes. -Petrochemical Refining Processes: Cracking (Steam Cracking, Hydrocracking, Fluid Catalytic Cracking), Reforming and Aromatisation, Isomerisation Processes, Dimerization and Polymerization, Aromatic Alkylation, Oxidation Processes, Hydrogenation and Dehydrogenation. -Products: Polymers and Plastics, Lubricants, Speciality and Fine Chemicals (Adhesives, Fragrances, Flavours etc...), Fibres, Pharmaceuticals.