有提示的在线搜索

IF 0.8 4区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Spyros Angelopoulos
{"title":"有提示的在线搜索","authors":"Spyros Angelopoulos","doi":"10.1016/j.ic.2023.105091","DOIUrl":null,"url":null,"abstract":"<div><p>We introduce the study of search problems, in a setting in which the searcher has some information, or <em>hint</em> concerning the hiding target. In particular, we focus on one of the fundamental problems in search theory, namely the <em>linear search</em> problem. Here, an immobile target is hidden at some unknown position on an unbounded line, and a mobile searcher, initially positioned at some specific point of the line called the <em>root</em>, must traverse the line so as to locate the target. The objective is to minimize the worst-case ratio of the distance traversed by the searcher to the distance of the target from the root, which is known as the <span><em>competitive ratio</em></span> of the search.</p><p>We consider three settings in regards to the nature of the hint: i) the hint suggests the exact position of the target on the line; ii) the hint suggests the direction of the optimal search (i.e., to the left or the right of the root); and iii) the hint is a general <em>k</em>-bit string that encodes some information concerning the target. Our objective is to study the <em>Pareto</em>-efficiency of strategies in this model, with respect to the tradeoff between <em>consistency</em> and <em>robustness</em>. Namely, we seek optimal, or near-optimal tradeoffs between the searcher's performance if the hint is correct (i.e., provided by a trusted source) and if the hint is incorrect (i.e., provided by an adversary).</p><p>We prove several results in each of these three settings. For positional hints, we show that the optimal consistency of <em>r</em>-robust strategies is <span><math><mo>(</mo><msub><mrow><mi>b</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>+</mo><mn>1</mn><mo>)</mo><mo>/</mo><mo>(</mo><msub><mrow><mi>b</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>−</mo><mn>1</mn><mo>)</mo></math></span>, where <span><math><msub><mrow><mi>b</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span> is defined to be equal to <span><math><mfrac><mrow><msub><mrow><mi>ρ</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>+</mo><msqrt><mrow><msubsup><mrow><mi>ρ</mi></mrow><mrow><mi>r</mi></mrow><mrow><mn>2</mn></mrow></msubsup><mo>−</mo><mn>4</mn><msub><mrow><mi>ρ</mi></mrow><mrow><mi>r</mi></mrow></msub></mrow></msqrt></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>, and <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>=</mo><mo>(</mo><mi>r</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>/</mo><mn>2</mn></math></span>, for all <span><math><mi>r</mi><mo>≥</mo><mn>9</mn></math></span>. For directional hints, we show that for every <span><math><mi>b</mi><mo>≥</mo><mn>1</mn></math></span> and <span><math><mi>δ</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span>, there exists a strategy with consistency equal to <span><math><mi>c</mi><mo>=</mo><mn>1</mn><mo>+</mo><mn>2</mn><mo>(</mo><mfrac><mrow><msup><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><msup><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mn>1</mn></mrow></mfrac><mo>+</mo><mi>δ</mi><mfrac><mrow><msup><mrow><mi>b</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow><mrow><msup><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mn>1</mn></mrow></mfrac><mo>)</mo></math></span> and robustness equal to <span><math><mn>1</mn><mo>+</mo><mn>2</mn><mo>(</mo><mfrac><mrow><msup><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><msup><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mn>1</mn></mrow></mfrac><mo>+</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>δ</mi></mrow></mfrac><mfrac><mrow><msup><mrow><mi>b</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow><mrow><msup><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mn>1</mn></mrow></mfrac><mo>)</mo></math></span>; furthermore, we show again that this upper bound is tight. Last, for general <em>k</em>-bit hints, we show upper bounds for general <em>k</em>-bit hints, as well as lower bounds: specifically, we show that the consistency of any 9-robust strategy must be at least 5, and that the consistency of <em>r</em>-robust strategies is at least <span><math><mn>1</mn><mo>+</mo><mn>2</mn><msub><mrow><mi>b</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>/</mo><mo>(</mo><msub><mrow><mi>b</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>−</mo><mn>1</mn><mo>)</mo></math></span>, in the case of a natural class of <em>asymptotic</em> strategies.</p></div>","PeriodicalId":54985,"journal":{"name":"Information and Computation","volume":"295 ","pages":"Article 105091"},"PeriodicalIF":0.8000,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Online search with a hint\",\"authors\":\"Spyros Angelopoulos\",\"doi\":\"10.1016/j.ic.2023.105091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We introduce the study of search problems, in a setting in which the searcher has some information, or <em>hint</em> concerning the hiding target. In particular, we focus on one of the fundamental problems in search theory, namely the <em>linear search</em> problem. Here, an immobile target is hidden at some unknown position on an unbounded line, and a mobile searcher, initially positioned at some specific point of the line called the <em>root</em>, must traverse the line so as to locate the target. The objective is to minimize the worst-case ratio of the distance traversed by the searcher to the distance of the target from the root, which is known as the <span><em>competitive ratio</em></span> of the search.</p><p>We consider three settings in regards to the nature of the hint: i) the hint suggests the exact position of the target on the line; ii) the hint suggests the direction of the optimal search (i.e., to the left or the right of the root); and iii) the hint is a general <em>k</em>-bit string that encodes some information concerning the target. Our objective is to study the <em>Pareto</em>-efficiency of strategies in this model, with respect to the tradeoff between <em>consistency</em> and <em>robustness</em>. Namely, we seek optimal, or near-optimal tradeoffs between the searcher's performance if the hint is correct (i.e., provided by a trusted source) and if the hint is incorrect (i.e., provided by an adversary).</p><p>We prove several results in each of these three settings. For positional hints, we show that the optimal consistency of <em>r</em>-robust strategies is <span><math><mo>(</mo><msub><mrow><mi>b</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>+</mo><mn>1</mn><mo>)</mo><mo>/</mo><mo>(</mo><msub><mrow><mi>b</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>−</mo><mn>1</mn><mo>)</mo></math></span>, where <span><math><msub><mrow><mi>b</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span> is defined to be equal to <span><math><mfrac><mrow><msub><mrow><mi>ρ</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>+</mo><msqrt><mrow><msubsup><mrow><mi>ρ</mi></mrow><mrow><mi>r</mi></mrow><mrow><mn>2</mn></mrow></msubsup><mo>−</mo><mn>4</mn><msub><mrow><mi>ρ</mi></mrow><mrow><mi>r</mi></mrow></msub></mrow></msqrt></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>, and <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>=</mo><mo>(</mo><mi>r</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>/</mo><mn>2</mn></math></span>, for all <span><math><mi>r</mi><mo>≥</mo><mn>9</mn></math></span>. For directional hints, we show that for every <span><math><mi>b</mi><mo>≥</mo><mn>1</mn></math></span> and <span><math><mi>δ</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span>, there exists a strategy with consistency equal to <span><math><mi>c</mi><mo>=</mo><mn>1</mn><mo>+</mo><mn>2</mn><mo>(</mo><mfrac><mrow><msup><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><msup><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mn>1</mn></mrow></mfrac><mo>+</mo><mi>δ</mi><mfrac><mrow><msup><mrow><mi>b</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow><mrow><msup><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mn>1</mn></mrow></mfrac><mo>)</mo></math></span> and robustness equal to <span><math><mn>1</mn><mo>+</mo><mn>2</mn><mo>(</mo><mfrac><mrow><msup><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><msup><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mn>1</mn></mrow></mfrac><mo>+</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>δ</mi></mrow></mfrac><mfrac><mrow><msup><mrow><mi>b</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow><mrow><msup><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mn>1</mn></mrow></mfrac><mo>)</mo></math></span>; furthermore, we show again that this upper bound is tight. Last, for general <em>k</em>-bit hints, we show upper bounds for general <em>k</em>-bit hints, as well as lower bounds: specifically, we show that the consistency of any 9-robust strategy must be at least 5, and that the consistency of <em>r</em>-robust strategies is at least <span><math><mn>1</mn><mo>+</mo><mn>2</mn><msub><mrow><mi>b</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>/</mo><mo>(</mo><msub><mrow><mi>b</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>−</mo><mn>1</mn><mo>)</mo></math></span>, in the case of a natural class of <em>asymptotic</em> strategies.</p></div>\",\"PeriodicalId\":54985,\"journal\":{\"name\":\"Information and Computation\",\"volume\":\"295 \",\"pages\":\"Article 105091\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information and Computation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0890540123000949\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information and Computation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0890540123000949","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

我们介绍了搜索问题的研究,在这种情况下,搜索者有一些关于隐藏目标的信息或提示。特别是,我们关注搜索理论中的一个基本问题,即线性搜索问题。在这里,一个不动的目标隐藏在无界线上的某个未知位置,而一个移动搜索器,最初定位在被称为根的线的某个特定点,必须遍历该线才能定位目标。目标是最大限度地减少搜索者经过的距离与目标距离根部的距离的最坏情况比率,这被称为搜索的竞争比率。关于提示的性质,我们考虑了三种设置:i)提示表明了目标在线上的确切位置;ii)提示提示最优搜索的方向(即向根的左边或右边);以及iii)所述提示是对关于所述目标的一些信息进行编码的一般k比特串。我们的目标是研究该模型中策略的帕累托效率,以及一致性和稳健性之间的权衡。也就是说,如果提示正确(即由可信来源提供)和提示不正确(即对手提供),我们会在搜索者的性能之间寻求最佳或接近最佳的折衷。我们在这三种设置中的每一种设置中都证明了几个结果。对于位置提示,我们证明了r-鲁棒策略的最优一致性是(br+1)/(br−1),其中br被定义为等于ρr+ρr2−4ρr2,并且对于所有r≥9,ρr=(r−1)/2。对于方向提示,我们证明了对于每个b≥1和δ∈(0,1],存在一个一致性等于c=1+2(b2b2−1+δb3b2−1)和鲁棒性等于1+2(b2 b2−1+1δb3b2−1)的策略;此外,我们再次证明了这个上界是紧的。最后,对于一般的k位提示,我们给出了一般k位提示的上界和下界:特别地,我们证明了在自然类渐近策略的情况下,任何9-鲁棒策略的一致性必须至少为5,并且r-鲁棒策略的相容性至少为1+2br/(br−1)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Online search with a hint

We introduce the study of search problems, in a setting in which the searcher has some information, or hint concerning the hiding target. In particular, we focus on one of the fundamental problems in search theory, namely the linear search problem. Here, an immobile target is hidden at some unknown position on an unbounded line, and a mobile searcher, initially positioned at some specific point of the line called the root, must traverse the line so as to locate the target. The objective is to minimize the worst-case ratio of the distance traversed by the searcher to the distance of the target from the root, which is known as the competitive ratio of the search.

We consider three settings in regards to the nature of the hint: i) the hint suggests the exact position of the target on the line; ii) the hint suggests the direction of the optimal search (i.e., to the left or the right of the root); and iii) the hint is a general k-bit string that encodes some information concerning the target. Our objective is to study the Pareto-efficiency of strategies in this model, with respect to the tradeoff between consistency and robustness. Namely, we seek optimal, or near-optimal tradeoffs between the searcher's performance if the hint is correct (i.e., provided by a trusted source) and if the hint is incorrect (i.e., provided by an adversary).

We prove several results in each of these three settings. For positional hints, we show that the optimal consistency of r-robust strategies is (br+1)/(br1), where br is defined to be equal to ρr+ρr24ρr2, and ρr=(r1)/2, for all r9. For directional hints, we show that for every b1 and δ(0,1], there exists a strategy with consistency equal to c=1+2(b2b21+δb3b21) and robustness equal to 1+2(b2b21+1δb3b21); furthermore, we show again that this upper bound is tight. Last, for general k-bit hints, we show upper bounds for general k-bit hints, as well as lower bounds: specifically, we show that the consistency of any 9-robust strategy must be at least 5, and that the consistency of r-robust strategies is at least 1+2br/(br1), in the case of a natural class of asymptotic strategies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Information and Computation
Information and Computation 工程技术-计算机:理论方法
CiteScore
2.30
自引率
0.00%
发文量
119
审稿时长
140 days
期刊介绍: Information and Computation welcomes original papers in all areas of theoretical computer science and computational applications of information theory. Survey articles of exceptional quality will also be considered. Particularly welcome are papers contributing new results in active theoretical areas such as -Biological computation and computational biology- Computational complexity- Computer theorem-proving- Concurrency and distributed process theory- Cryptographic theory- Data base theory- Decision problems in logic- Design and analysis of algorithms- Discrete optimization and mathematical programming- Inductive inference and learning theory- Logic & constraint programming- Program verification & model checking- Probabilistic & Quantum computation- Semantics of programming languages- Symbolic computation, lambda calculus, and rewriting systems- Types and typechecking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信