{"title":"有提示的在线搜索","authors":"Spyros Angelopoulos","doi":"10.1016/j.ic.2023.105091","DOIUrl":null,"url":null,"abstract":"<div><p>We introduce the study of search problems, in a setting in which the searcher has some information, or <em>hint</em> concerning the hiding target. In particular, we focus on one of the fundamental problems in search theory, namely the <em>linear search</em> problem. Here, an immobile target is hidden at some unknown position on an unbounded line, and a mobile searcher, initially positioned at some specific point of the line called the <em>root</em>, must traverse the line so as to locate the target. The objective is to minimize the worst-case ratio of the distance traversed by the searcher to the distance of the target from the root, which is known as the <span><em>competitive ratio</em></span> of the search.</p><p>We consider three settings in regards to the nature of the hint: i) the hint suggests the exact position of the target on the line; ii) the hint suggests the direction of the optimal search (i.e., to the left or the right of the root); and iii) the hint is a general <em>k</em>-bit string that encodes some information concerning the target. Our objective is to study the <em>Pareto</em>-efficiency of strategies in this model, with respect to the tradeoff between <em>consistency</em> and <em>robustness</em>. Namely, we seek optimal, or near-optimal tradeoffs between the searcher's performance if the hint is correct (i.e., provided by a trusted source) and if the hint is incorrect (i.e., provided by an adversary).</p><p>We prove several results in each of these three settings. For positional hints, we show that the optimal consistency of <em>r</em>-robust strategies is <span><math><mo>(</mo><msub><mrow><mi>b</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>+</mo><mn>1</mn><mo>)</mo><mo>/</mo><mo>(</mo><msub><mrow><mi>b</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>−</mo><mn>1</mn><mo>)</mo></math></span>, where <span><math><msub><mrow><mi>b</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span> is defined to be equal to <span><math><mfrac><mrow><msub><mrow><mi>ρ</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>+</mo><msqrt><mrow><msubsup><mrow><mi>ρ</mi></mrow><mrow><mi>r</mi></mrow><mrow><mn>2</mn></mrow></msubsup><mo>−</mo><mn>4</mn><msub><mrow><mi>ρ</mi></mrow><mrow><mi>r</mi></mrow></msub></mrow></msqrt></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>, and <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>=</mo><mo>(</mo><mi>r</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>/</mo><mn>2</mn></math></span>, for all <span><math><mi>r</mi><mo>≥</mo><mn>9</mn></math></span>. For directional hints, we show that for every <span><math><mi>b</mi><mo>≥</mo><mn>1</mn></math></span> and <span><math><mi>δ</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span>, there exists a strategy with consistency equal to <span><math><mi>c</mi><mo>=</mo><mn>1</mn><mo>+</mo><mn>2</mn><mo>(</mo><mfrac><mrow><msup><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><msup><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mn>1</mn></mrow></mfrac><mo>+</mo><mi>δ</mi><mfrac><mrow><msup><mrow><mi>b</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow><mrow><msup><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mn>1</mn></mrow></mfrac><mo>)</mo></math></span> and robustness equal to <span><math><mn>1</mn><mo>+</mo><mn>2</mn><mo>(</mo><mfrac><mrow><msup><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><msup><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mn>1</mn></mrow></mfrac><mo>+</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>δ</mi></mrow></mfrac><mfrac><mrow><msup><mrow><mi>b</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow><mrow><msup><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mn>1</mn></mrow></mfrac><mo>)</mo></math></span>; furthermore, we show again that this upper bound is tight. Last, for general <em>k</em>-bit hints, we show upper bounds for general <em>k</em>-bit hints, as well as lower bounds: specifically, we show that the consistency of any 9-robust strategy must be at least 5, and that the consistency of <em>r</em>-robust strategies is at least <span><math><mn>1</mn><mo>+</mo><mn>2</mn><msub><mrow><mi>b</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>/</mo><mo>(</mo><msub><mrow><mi>b</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>−</mo><mn>1</mn><mo>)</mo></math></span>, in the case of a natural class of <em>asymptotic</em> strategies.</p></div>","PeriodicalId":54985,"journal":{"name":"Information and Computation","volume":"295 ","pages":"Article 105091"},"PeriodicalIF":0.8000,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Online search with a hint\",\"authors\":\"Spyros Angelopoulos\",\"doi\":\"10.1016/j.ic.2023.105091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We introduce the study of search problems, in a setting in which the searcher has some information, or <em>hint</em> concerning the hiding target. In particular, we focus on one of the fundamental problems in search theory, namely the <em>linear search</em> problem. Here, an immobile target is hidden at some unknown position on an unbounded line, and a mobile searcher, initially positioned at some specific point of the line called the <em>root</em>, must traverse the line so as to locate the target. The objective is to minimize the worst-case ratio of the distance traversed by the searcher to the distance of the target from the root, which is known as the <span><em>competitive ratio</em></span> of the search.</p><p>We consider three settings in regards to the nature of the hint: i) the hint suggests the exact position of the target on the line; ii) the hint suggests the direction of the optimal search (i.e., to the left or the right of the root); and iii) the hint is a general <em>k</em>-bit string that encodes some information concerning the target. Our objective is to study the <em>Pareto</em>-efficiency of strategies in this model, with respect to the tradeoff between <em>consistency</em> and <em>robustness</em>. Namely, we seek optimal, or near-optimal tradeoffs between the searcher's performance if the hint is correct (i.e., provided by a trusted source) and if the hint is incorrect (i.e., provided by an adversary).</p><p>We prove several results in each of these three settings. For positional hints, we show that the optimal consistency of <em>r</em>-robust strategies is <span><math><mo>(</mo><msub><mrow><mi>b</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>+</mo><mn>1</mn><mo>)</mo><mo>/</mo><mo>(</mo><msub><mrow><mi>b</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>−</mo><mn>1</mn><mo>)</mo></math></span>, where <span><math><msub><mrow><mi>b</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span> is defined to be equal to <span><math><mfrac><mrow><msub><mrow><mi>ρ</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>+</mo><msqrt><mrow><msubsup><mrow><mi>ρ</mi></mrow><mrow><mi>r</mi></mrow><mrow><mn>2</mn></mrow></msubsup><mo>−</mo><mn>4</mn><msub><mrow><mi>ρ</mi></mrow><mrow><mi>r</mi></mrow></msub></mrow></msqrt></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>, and <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>=</mo><mo>(</mo><mi>r</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>/</mo><mn>2</mn></math></span>, for all <span><math><mi>r</mi><mo>≥</mo><mn>9</mn></math></span>. For directional hints, we show that for every <span><math><mi>b</mi><mo>≥</mo><mn>1</mn></math></span> and <span><math><mi>δ</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span>, there exists a strategy with consistency equal to <span><math><mi>c</mi><mo>=</mo><mn>1</mn><mo>+</mo><mn>2</mn><mo>(</mo><mfrac><mrow><msup><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><msup><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mn>1</mn></mrow></mfrac><mo>+</mo><mi>δ</mi><mfrac><mrow><msup><mrow><mi>b</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow><mrow><msup><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mn>1</mn></mrow></mfrac><mo>)</mo></math></span> and robustness equal to <span><math><mn>1</mn><mo>+</mo><mn>2</mn><mo>(</mo><mfrac><mrow><msup><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><msup><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mn>1</mn></mrow></mfrac><mo>+</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>δ</mi></mrow></mfrac><mfrac><mrow><msup><mrow><mi>b</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow><mrow><msup><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mn>1</mn></mrow></mfrac><mo>)</mo></math></span>; furthermore, we show again that this upper bound is tight. Last, for general <em>k</em>-bit hints, we show upper bounds for general <em>k</em>-bit hints, as well as lower bounds: specifically, we show that the consistency of any 9-robust strategy must be at least 5, and that the consistency of <em>r</em>-robust strategies is at least <span><math><mn>1</mn><mo>+</mo><mn>2</mn><msub><mrow><mi>b</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>/</mo><mo>(</mo><msub><mrow><mi>b</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>−</mo><mn>1</mn><mo>)</mo></math></span>, in the case of a natural class of <em>asymptotic</em> strategies.</p></div>\",\"PeriodicalId\":54985,\"journal\":{\"name\":\"Information and Computation\",\"volume\":\"295 \",\"pages\":\"Article 105091\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information and Computation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0890540123000949\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information and Computation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0890540123000949","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
We introduce the study of search problems, in a setting in which the searcher has some information, or hint concerning the hiding target. In particular, we focus on one of the fundamental problems in search theory, namely the linear search problem. Here, an immobile target is hidden at some unknown position on an unbounded line, and a mobile searcher, initially positioned at some specific point of the line called the root, must traverse the line so as to locate the target. The objective is to minimize the worst-case ratio of the distance traversed by the searcher to the distance of the target from the root, which is known as the competitive ratio of the search.
We consider three settings in regards to the nature of the hint: i) the hint suggests the exact position of the target on the line; ii) the hint suggests the direction of the optimal search (i.e., to the left or the right of the root); and iii) the hint is a general k-bit string that encodes some information concerning the target. Our objective is to study the Pareto-efficiency of strategies in this model, with respect to the tradeoff between consistency and robustness. Namely, we seek optimal, or near-optimal tradeoffs between the searcher's performance if the hint is correct (i.e., provided by a trusted source) and if the hint is incorrect (i.e., provided by an adversary).
We prove several results in each of these three settings. For positional hints, we show that the optimal consistency of r-robust strategies is , where is defined to be equal to , and , for all . For directional hints, we show that for every and , there exists a strategy with consistency equal to and robustness equal to ; furthermore, we show again that this upper bound is tight. Last, for general k-bit hints, we show upper bounds for general k-bit hints, as well as lower bounds: specifically, we show that the consistency of any 9-robust strategy must be at least 5, and that the consistency of r-robust strategies is at least , in the case of a natural class of asymptotic strategies.
期刊介绍:
Information and Computation welcomes original papers in all areas of theoretical computer science and computational applications of information theory. Survey articles of exceptional quality will also be considered. Particularly welcome are papers contributing new results in active theoretical areas such as
-Biological computation and computational biology-
Computational complexity-
Computer theorem-proving-
Concurrency and distributed process theory-
Cryptographic theory-
Data base theory-
Decision problems in logic-
Design and analysis of algorithms-
Discrete optimization and mathematical programming-
Inductive inference and learning theory-
Logic & constraint programming-
Program verification & model checking-
Probabilistic & Quantum computation-
Semantics of programming languages-
Symbolic computation, lambda calculus, and rewriting systems-
Types and typechecking