{"title":"强单调多边形欧拉格式","authors":"Tim Johnston, Sotirios Sabanis","doi":"10.1016/j.jco.2023.101801","DOIUrl":null,"url":null,"abstract":"<div><p>In recent years tamed schemes have become an important technique for simulating SDEs and SPDEs whose continuous coefficients display superlinear growth. The taming method involves curbing the growth of the coefficients as a function of stepsize, but so far has not been adapted to preserve the monotonicity of the coefficients. This has arisen as an issue in <span>[4]</span>, where the lack of a strongly monotonic tamed scheme forces strong conditions on the setting. In this article we give a novel and explicit method for truncating monotonic functions in separable real Hilbert spaces, and show how this can be used to define a polygonal (tamed) Euler scheme on finite dimensional space, preserving the monotonicity of the drift coefficient, and converging to the true solution at the same rate as the classical Euler scheme for Lipschitz coefficients. Our construction is the first explicit method for truncating monotone functions we are aware of, and the first in infinite dimensions.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A strongly monotonic polygonal Euler scheme\",\"authors\":\"Tim Johnston, Sotirios Sabanis\",\"doi\":\"10.1016/j.jco.2023.101801\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In recent years tamed schemes have become an important technique for simulating SDEs and SPDEs whose continuous coefficients display superlinear growth. The taming method involves curbing the growth of the coefficients as a function of stepsize, but so far has not been adapted to preserve the monotonicity of the coefficients. This has arisen as an issue in <span>[4]</span>, where the lack of a strongly monotonic tamed scheme forces strong conditions on the setting. In this article we give a novel and explicit method for truncating monotonic functions in separable real Hilbert spaces, and show how this can be used to define a polygonal (tamed) Euler scheme on finite dimensional space, preserving the monotonicity of the drift coefficient, and converging to the true solution at the same rate as the classical Euler scheme for Lipschitz coefficients. Our construction is the first explicit method for truncating monotone functions we are aware of, and the first in infinite dimensions.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0885064X23000705\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0885064X23000705","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
In recent years tamed schemes have become an important technique for simulating SDEs and SPDEs whose continuous coefficients display superlinear growth. The taming method involves curbing the growth of the coefficients as a function of stepsize, but so far has not been adapted to preserve the monotonicity of the coefficients. This has arisen as an issue in [4], where the lack of a strongly monotonic tamed scheme forces strong conditions on the setting. In this article we give a novel and explicit method for truncating monotonic functions in separable real Hilbert spaces, and show how this can be used to define a polygonal (tamed) Euler scheme on finite dimensional space, preserving the monotonicity of the drift coefficient, and converging to the true solution at the same rate as the classical Euler scheme for Lipschitz coefficients. Our construction is the first explicit method for truncating monotone functions we are aware of, and the first in infinite dimensions.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.