{"title":"在最坏情况下周期函数L∞逼近的可跟踪性的标准信息幂","authors":"Jiaxin Geng, Heping Wang","doi":"10.1016/j.jco.2023.101790","DOIUrl":null,"url":null,"abstract":"<div><p>We study multivariate approximation of periodic functions in the worst case setting with the error measured in the <span><math><msub><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msub></math></span> norm. We consider algorithms that use standard information <span><math><msup><mrow><mi>Λ</mi></mrow><mrow><mi>std</mi></mrow></msup></math></span> consisting of function values or general linear information <span><math><msup><mrow><mi>Λ</mi></mrow><mrow><mi>all</mi></mrow></msup></math></span> consisting of arbitrary continuous linear functionals. We investigate equivalences of various notions of algebraic and exponential tractability for <span><math><msup><mrow><mi>Λ</mi></mrow><mrow><mi>std</mi></mrow></msup></math></span> and <span><math><msup><mrow><mi>Λ</mi></mrow><mrow><mi>all</mi></mrow></msup></math></span> under the absolute or normalized error criterion, and show that the power of <span><math><msup><mrow><mi>Λ</mi></mrow><mrow><mi>std</mi></mrow></msup></math></span> is the same as the one of <span><math><msup><mrow><mi>Λ</mi></mrow><mrow><mi>all</mi></mrow></msup></math></span> for various notions of algebraic and exponential tractability. Our results can be applied to weighted Korobov spaces and Korobov spaces with exponential weights. This gives a special solution to Open Problem 145 as posed by Novak and Woźniakowski (2012) <span>[40]</span>.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the power of standard information for tractability for L∞ approximation of periodic functions in the worst case setting\",\"authors\":\"Jiaxin Geng, Heping Wang\",\"doi\":\"10.1016/j.jco.2023.101790\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study multivariate approximation of periodic functions in the worst case setting with the error measured in the <span><math><msub><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msub></math></span> norm. We consider algorithms that use standard information <span><math><msup><mrow><mi>Λ</mi></mrow><mrow><mi>std</mi></mrow></msup></math></span> consisting of function values or general linear information <span><math><msup><mrow><mi>Λ</mi></mrow><mrow><mi>all</mi></mrow></msup></math></span> consisting of arbitrary continuous linear functionals. We investigate equivalences of various notions of algebraic and exponential tractability for <span><math><msup><mrow><mi>Λ</mi></mrow><mrow><mi>std</mi></mrow></msup></math></span> and <span><math><msup><mrow><mi>Λ</mi></mrow><mrow><mi>all</mi></mrow></msup></math></span> under the absolute or normalized error criterion, and show that the power of <span><math><msup><mrow><mi>Λ</mi></mrow><mrow><mi>std</mi></mrow></msup></math></span> is the same as the one of <span><math><msup><mrow><mi>Λ</mi></mrow><mrow><mi>all</mi></mrow></msup></math></span> for various notions of algebraic and exponential tractability. Our results can be applied to weighted Korobov spaces and Korobov spaces with exponential weights. This gives a special solution to Open Problem 145 as posed by Novak and Woźniakowski (2012) <span>[40]</span>.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0885064X23000596\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0885064X23000596","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
On the power of standard information for tractability for L∞ approximation of periodic functions in the worst case setting
We study multivariate approximation of periodic functions in the worst case setting with the error measured in the norm. We consider algorithms that use standard information consisting of function values or general linear information consisting of arbitrary continuous linear functionals. We investigate equivalences of various notions of algebraic and exponential tractability for and under the absolute or normalized error criterion, and show that the power of is the same as the one of for various notions of algebraic and exponential tractability. Our results can be applied to weighted Korobov spaces and Korobov spaces with exponential weights. This gives a special solution to Open Problem 145 as posed by Novak and Woźniakowski (2012) [40].
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.