在最坏情况下周期函数L∞逼近的可跟踪性的标准信息幂

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jiaxin Geng, Heping Wang
{"title":"在最坏情况下周期函数L∞逼近的可跟踪性的标准信息幂","authors":"Jiaxin Geng,&nbsp;Heping Wang","doi":"10.1016/j.jco.2023.101790","DOIUrl":null,"url":null,"abstract":"<div><p>We study multivariate approximation of periodic functions in the worst case setting with the error measured in the <span><math><msub><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msub></math></span> norm. We consider algorithms that use standard information <span><math><msup><mrow><mi>Λ</mi></mrow><mrow><mi>std</mi></mrow></msup></math></span> consisting of function values or general linear information <span><math><msup><mrow><mi>Λ</mi></mrow><mrow><mi>all</mi></mrow></msup></math></span> consisting of arbitrary continuous linear functionals. We investigate equivalences of various notions of algebraic and exponential tractability for <span><math><msup><mrow><mi>Λ</mi></mrow><mrow><mi>std</mi></mrow></msup></math></span> and <span><math><msup><mrow><mi>Λ</mi></mrow><mrow><mi>all</mi></mrow></msup></math></span> under the absolute or normalized error criterion, and show that the power of <span><math><msup><mrow><mi>Λ</mi></mrow><mrow><mi>std</mi></mrow></msup></math></span> is the same as the one of <span><math><msup><mrow><mi>Λ</mi></mrow><mrow><mi>all</mi></mrow></msup></math></span> for various notions of algebraic and exponential tractability. Our results can be applied to weighted Korobov spaces and Korobov spaces with exponential weights. This gives a special solution to Open Problem 145 as posed by Novak and Woźniakowski (2012) <span>[40]</span>.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the power of standard information for tractability for L∞ approximation of periodic functions in the worst case setting\",\"authors\":\"Jiaxin Geng,&nbsp;Heping Wang\",\"doi\":\"10.1016/j.jco.2023.101790\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study multivariate approximation of periodic functions in the worst case setting with the error measured in the <span><math><msub><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msub></math></span> norm. We consider algorithms that use standard information <span><math><msup><mrow><mi>Λ</mi></mrow><mrow><mi>std</mi></mrow></msup></math></span> consisting of function values or general linear information <span><math><msup><mrow><mi>Λ</mi></mrow><mrow><mi>all</mi></mrow></msup></math></span> consisting of arbitrary continuous linear functionals. We investigate equivalences of various notions of algebraic and exponential tractability for <span><math><msup><mrow><mi>Λ</mi></mrow><mrow><mi>std</mi></mrow></msup></math></span> and <span><math><msup><mrow><mi>Λ</mi></mrow><mrow><mi>all</mi></mrow></msup></math></span> under the absolute or normalized error criterion, and show that the power of <span><math><msup><mrow><mi>Λ</mi></mrow><mrow><mi>std</mi></mrow></msup></math></span> is the same as the one of <span><math><msup><mrow><mi>Λ</mi></mrow><mrow><mi>all</mi></mrow></msup></math></span> for various notions of algebraic and exponential tractability. Our results can be applied to weighted Korobov spaces and Korobov spaces with exponential weights. This gives a special solution to Open Problem 145 as posed by Novak and Woźniakowski (2012) <span>[40]</span>.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0885064X23000596\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0885064X23000596","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

研究了周期函数在最坏情况下的多元逼近,误差测量在L∞范数上。我们考虑使用由函数值组成的标准信息Λstd或由任意连续线性泛函组成的一般线性信息Λall的算法。研究了Λstd和Λall在绝对误差或归一化误差判据下各种代数可溯性和指数可溯性概念的等价性,并证明了Λstd的幂次与Λall的幂次对于各种代数可溯性和指数可溯性的幂次是相同的。我们的结果可以应用于加权Korobov空间和指数权重的Korobov空间。这给出了由Novak和Woźniakowski(2012)[40]提出的开放问题145的一个特殊解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the power of standard information for tractability for L∞ approximation of periodic functions in the worst case setting

We study multivariate approximation of periodic functions in the worst case setting with the error measured in the L norm. We consider algorithms that use standard information Λstd consisting of function values or general linear information Λall consisting of arbitrary continuous linear functionals. We investigate equivalences of various notions of algebraic and exponential tractability for Λstd and Λall under the absolute or normalized error criterion, and show that the power of Λstd is the same as the one of Λall for various notions of algebraic and exponential tractability. Our results can be applied to weighted Korobov spaces and Korobov spaces with exponential weights. This gives a special solution to Open Problem 145 as posed by Novak and Woźniakowski (2012) [40].

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信