研究了圆形受限三体问题中非球面体和三体相互作用对平衡动力学的影响

IF 5.3 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Eman M. Moneer , Samira Elaissi , Fredy L. Dubeibe , Euaggelos E. Zotos
{"title":"研究了圆形受限三体问题中非球面体和三体相互作用对平衡动力学的影响","authors":"Eman M. Moneer ,&nbsp;Samira Elaissi ,&nbsp;Fredy L. Dubeibe ,&nbsp;Euaggelos E. Zotos","doi":"10.1016/j.chaos.2023.114110","DOIUrl":null,"url":null,"abstract":"<div><p><span>In this paper, we study a modified version of the classical restricted 3-body problem, which introduces an additional mutual interaction force. Moreover, we extend our analysis to include non-spherical shapes, specifically prolate or oblate shapes, for the primary bodies within the system. Our main objective is to investigate how the additional interaction and non-sphericity of the primaries influence the locations and dynamical characteristics of the equilibrium points in the system. To accomplish this, we employ standard numerical methods and techniques. Through a meticulous examination of the system’s parameter space, we have identified a range of 1 to 13 </span>libration points. We have observed that the total number of equilibrium points is directly related to the sign and intensity of the three-body interaction term. Consequently, our findings reveal a substantial difference when compared to scenarios where only three-body interactions or the non-sphericity of the primaries are considered independently.</p></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"176 ","pages":"Article 114110"},"PeriodicalIF":5.3000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigating the impact of non-spherical bodies and three-body interactions on equilibrium dynamics in the circular restricted three-body problem\",\"authors\":\"Eman M. Moneer ,&nbsp;Samira Elaissi ,&nbsp;Fredy L. Dubeibe ,&nbsp;Euaggelos E. Zotos\",\"doi\":\"10.1016/j.chaos.2023.114110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>In this paper, we study a modified version of the classical restricted 3-body problem, which introduces an additional mutual interaction force. Moreover, we extend our analysis to include non-spherical shapes, specifically prolate or oblate shapes, for the primary bodies within the system. Our main objective is to investigate how the additional interaction and non-sphericity of the primaries influence the locations and dynamical characteristics of the equilibrium points in the system. To accomplish this, we employ standard numerical methods and techniques. Through a meticulous examination of the system’s parameter space, we have identified a range of 1 to 13 </span>libration points. We have observed that the total number of equilibrium points is directly related to the sign and intensity of the three-body interaction term. Consequently, our findings reveal a substantial difference when compared to scenarios where only three-body interactions or the non-sphericity of the primaries are considered independently.</p></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":\"176 \",\"pages\":\"Article 114110\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2023-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960077923010111\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077923010111","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

在这篇论文中,我们研究了经典的受限三体问题的一个修正版本,该问题引入了一个额外的相互作用力。此外,我们将我们的分析扩展到包括系统内主要物体的非球形,特别是细长或扁球形。我们的主要目标是研究初级的额外相互作用和非球形如何影响系统中平衡点的位置和动力学特性。为了实现这一点,我们采用了标准的数值方法和技术。通过对系统参数空间的仔细检查,我们确定了1到13个平动点。我们观察到,平衡点的总数与三体相互作用项的符号和强度直接相关。因此,与仅单独考虑三体相互作用或初级的非球形的情况相比,我们的发现揭示了实质性的差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigating the impact of non-spherical bodies and three-body interactions on equilibrium dynamics in the circular restricted three-body problem

In this paper, we study a modified version of the classical restricted 3-body problem, which introduces an additional mutual interaction force. Moreover, we extend our analysis to include non-spherical shapes, specifically prolate or oblate shapes, for the primary bodies within the system. Our main objective is to investigate how the additional interaction and non-sphericity of the primaries influence the locations and dynamical characteristics of the equilibrium points in the system. To accomplish this, we employ standard numerical methods and techniques. Through a meticulous examination of the system’s parameter space, we have identified a range of 1 to 13 libration points. We have observed that the total number of equilibrium points is directly related to the sign and intensity of the three-body interaction term. Consequently, our findings reveal a substantial difference when compared to scenarios where only three-body interactions or the non-sphericity of the primaries are considered independently.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信