Eman M. Moneer , Samira Elaissi , Fredy L. Dubeibe , Euaggelos E. Zotos
{"title":"研究了圆形受限三体问题中非球面体和三体相互作用对平衡动力学的影响","authors":"Eman M. Moneer , Samira Elaissi , Fredy L. Dubeibe , Euaggelos E. Zotos","doi":"10.1016/j.chaos.2023.114110","DOIUrl":null,"url":null,"abstract":"<div><p><span>In this paper, we study a modified version of the classical restricted 3-body problem, which introduces an additional mutual interaction force. Moreover, we extend our analysis to include non-spherical shapes, specifically prolate or oblate shapes, for the primary bodies within the system. Our main objective is to investigate how the additional interaction and non-sphericity of the primaries influence the locations and dynamical characteristics of the equilibrium points in the system. To accomplish this, we employ standard numerical methods and techniques. Through a meticulous examination of the system’s parameter space, we have identified a range of 1 to 13 </span>libration points. We have observed that the total number of equilibrium points is directly related to the sign and intensity of the three-body interaction term. Consequently, our findings reveal a substantial difference when compared to scenarios where only three-body interactions or the non-sphericity of the primaries are considered independently.</p></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"176 ","pages":"Article 114110"},"PeriodicalIF":5.3000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigating the impact of non-spherical bodies and three-body interactions on equilibrium dynamics in the circular restricted three-body problem\",\"authors\":\"Eman M. Moneer , Samira Elaissi , Fredy L. Dubeibe , Euaggelos E. Zotos\",\"doi\":\"10.1016/j.chaos.2023.114110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>In this paper, we study a modified version of the classical restricted 3-body problem, which introduces an additional mutual interaction force. Moreover, we extend our analysis to include non-spherical shapes, specifically prolate or oblate shapes, for the primary bodies within the system. Our main objective is to investigate how the additional interaction and non-sphericity of the primaries influence the locations and dynamical characteristics of the equilibrium points in the system. To accomplish this, we employ standard numerical methods and techniques. Through a meticulous examination of the system’s parameter space, we have identified a range of 1 to 13 </span>libration points. We have observed that the total number of equilibrium points is directly related to the sign and intensity of the three-body interaction term. Consequently, our findings reveal a substantial difference when compared to scenarios where only three-body interactions or the non-sphericity of the primaries are considered independently.</p></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":\"176 \",\"pages\":\"Article 114110\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2023-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960077923010111\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077923010111","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Investigating the impact of non-spherical bodies and three-body interactions on equilibrium dynamics in the circular restricted three-body problem
In this paper, we study a modified version of the classical restricted 3-body problem, which introduces an additional mutual interaction force. Moreover, we extend our analysis to include non-spherical shapes, specifically prolate or oblate shapes, for the primary bodies within the system. Our main objective is to investigate how the additional interaction and non-sphericity of the primaries influence the locations and dynamical characteristics of the equilibrium points in the system. To accomplish this, we employ standard numerical methods and techniques. Through a meticulous examination of the system’s parameter space, we have identified a range of 1 to 13 libration points. We have observed that the total number of equilibrium points is directly related to the sign and intensity of the three-body interaction term. Consequently, our findings reveal a substantial difference when compared to scenarios where only three-body interactions or the non-sphericity of the primaries are considered independently.
期刊介绍:
Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.